

Claudio Franceschi

Alma Mater Studiorum Università di Bologna; IRCCS Institute of Neurological Sciences of Bologna, Italy; Lobachevsky State University, Nizhny Novgorod, Russia

Biomarkers of biological age, chronic inflammation/ inflammaging

Healthy Life and Longevity Centenarians in Italy and Israeli Lifestyle, Nutrition, Clinical, and Genetics Monday 2nd December The Steinhardt Museum of Natural History Klausner St 12, Tel Aviv-Yafo, Israel

BOLOGNA/UNIBO: the arcades of the oldest university in the Western world (founded in 1088)

The Bologna team

University of Bologna & Inst Neurol Sci of Bologna

Claudio Franceschi - Professor Emeritus, MD Stefano Salvioli – Associate Professor Paolo Garagnani – Associate Professor Miriam Capri – Senior Researcher Aurelia Santoro - Researcher Federica Sevini – Technician Maria Giustina Palmas - Nurse Massimo Izzi – Sanitary Assistant

PhD students

Maddalena Milazzo Francesco Ravaioli Salvatore Collura Giulia Guidetti Marie Curie Fellowships Katarzyna Kwiatkowsa Anna Carbó Meix

Postdocs

Maria Giulia Bacalini Maria Conte Cristina Giuliani Elena Marasco Morena Martucci Cristina Morsiani Chiara Pirazzini Claudia Sala

Guest

Daniela Monti – Associated Professor University of Florence

Aging is NOT a «simple» decline of all functions

THE "REMODELLING THEORY OF AGING" (Franceschi et al., 1995; 2000)

The phenotype of old people is the result of the body's

capability to <u>respond/adapt</u> to the unrepaired

molecular/cellular insults continuously occurring lifelong

in all tissues and organs (at a different rate !!!)

REMODELLING

a dynamic scenario characterized by a complex mixture of:

- 1. Progressive accumulation of damages/mutations
- 2. Chronic activation of local and systemic <u>adaptive</u> responses, including inflammation and adaptation to inflammation...

Usually it is difficult to distinguish between the two!

THE "REMODELLING THEORY OF AGING" (Franceschi et al., 1995; 2000)

This lifelong remodelling is a complex mixture of linear, non-linear and stochastic processes which generate heterogeneity

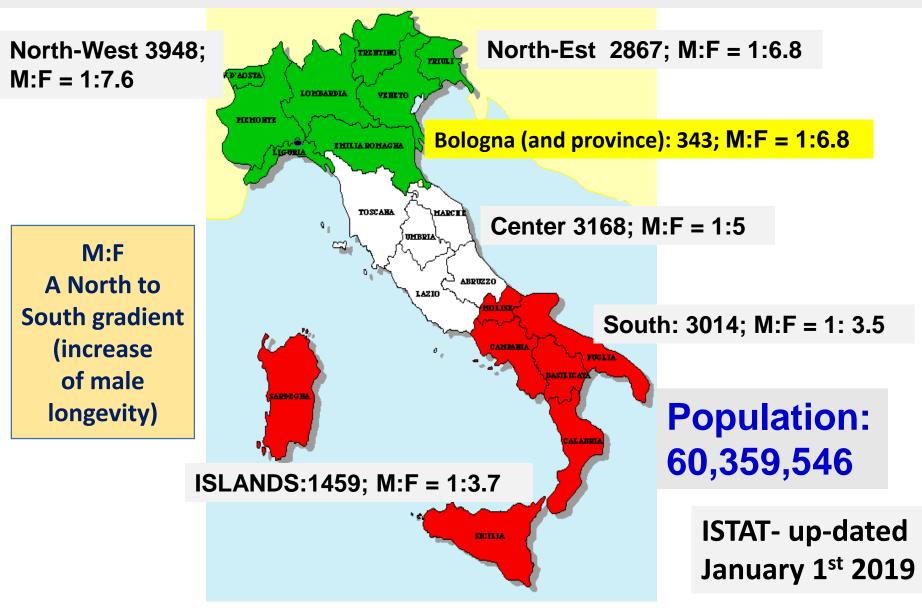
Questions/Model

- Why some people live consistently longer than others?
- Which is the biological basis of human longevity?

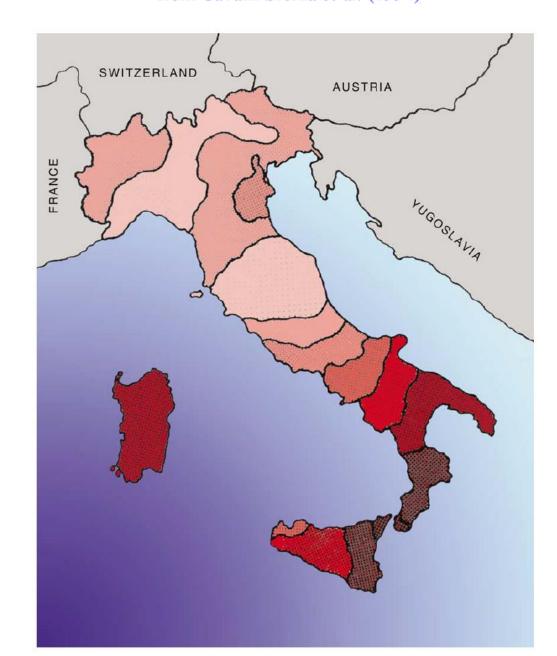
Questions/Model

- Why some people live consistently longer than others?
- Which is the biological basis of human longevity?

Centenarians (100+) and their offspring as a model


Centenarians (100+) as an exceptional model

- They <u>live 20-30 years more</u> than members of the same demographic cohort
- Most of them avoided or largely postponed (20-30 years) the major age-associated diseases
- They die in few days!


100+ are the best model of human longevity and allow to identify biomarkers of healthy aging and protective factors (genetic, epigenetic...) versus the major age-associated pathologies

DEMOGRAPHY

CENTENARIANS IN ITALY (100+): 14,456; M = 2,324; F= 12,132 105+ = 1,112 110+ = 21

Synthetic map of Italy representing the first principal component from Cavalli Sforza et al. (1994)

2. CENTENARIANS AS MODELS OF LONGEVITY AND HEALTHY AGING

2.1. Longevity as a Recent, Historical, and Dynamic Phenomenon

Homo sapiens appeared on the stage about 300,000 years ago, and until about a century ago, life expectancy was about 50-55 years in developed countries, and it did not change much from that of hunter-gatherers until the twentieth century. Then a demographic revolution started, first in developed countries, but soon spreading worldwide. Life expectancy started to increase at about 3 months per year, and the average life expectancy at birth in developed countries is now more than 87 years for women and about 84 years for men (130). Thus, for hundreds of millennia longevity was a rare event, and extreme longevity was likely even more rare, apart from few exceptions that must be carefully investigated and validated. When we started studying centenarians in Italy in about 1990, the centenarians had been born at the end of the nineteenth century, and there were about 3,000 of them; two decades later, in 2017, they were born at the beginning of the twentieth century and there are 18,765 of them (of which 3,000 are men) (58). Thus, from a demographic standpoint, extreme longevity is a highly dynamic phenomenon, and the high number of centenarians worldwide currently (about 434,000) (131) must be considered a recent, largely unpredicted phenomenon. Centenarians undergo rapid changes not only regarding

Franceschi et al., Annual Reviews of Nutrition 2018

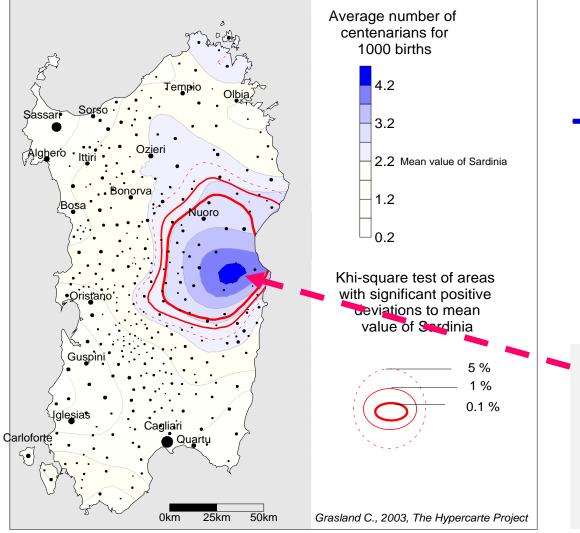
Available online at www.sciencedirect.com

SCIENCE DIRECT.

Experimental Gerontology 39 (2004) 1423-1429

Experimental Gerontology

www.elsevier.com/locate/expgero


Identification of a geographic area characterized by extreme longevity in the Sardinia island: the AKEA study

Michel Poulain^{a,*}, Giovanni Mario Pes^b, Claude Grasland^c, Ciriaco Carru^b, Luigi Ferrucci^{d,e}, Giovannella Baggio^f, Claudio Franceschi^g, Luca Deiana^b

^aFNRS-GéDAP, Groupe d'Etudes de Démographie Appliquée, Université Catholique de Louvain, Louvain-la-Neuve, Belgique ^bInstitute of Clinical Biochemistry, University of Sassari, Italy ^cUMR Géographie-cités, University Paris 7, France ^dLongitudinal Studies Section. Clinical Research Branch, National Institute on Aging, Baltimore, MD, USA ^eLaboratory of Clinical Epidemiology, Geriatric Department, Italian National Research Centre on Aging (INRCA), Firenze, Italy ^fInternal Medicine Unit, Azienda Ospedale-Università di Padova and University of Sassari, Italy ^gDepartment of Experimental Pathology and C.I.G., University of Bologna, and INRCA, Department of Gerontological Research, Ancona, Italy

centenarians are non-randomly distributed

according to their place of birth

The discovery of the blue zone exceptional male longevity M:F centenarian

ratio 1:1

Deiana et al., Exp. Gerontol., 39:1423-9, 2004

DEMOGRAPHIC RESEARCH

VOLUME 31, ARTICLE 42, PAGES 1275–1296 PUBLISHED 25 NOVEMBER 2014

http://www.demographic-research.org/Volumes/Vol31/42/ DOI: 10.4054/DemRes.2014.31.42

Research Article

Maternal longevity is associated with lower infant mortality

Graziella Caselli	Ciriaco Carru
Enrica Lapucci	Luca Deiana
Rosa Maria Lipsi	Claudio Franceschi
Lucia Pozzi	James W. Vaupel
Giovannella Baggio	

DEMOGRAPHIC RESEARCH

VOLUME 32, ARTICLE 37, PAGES 1049–1064 PUBLISHED 21 MAY 2015

http://www.demographic-research.org/Volumes/Vol32/37/ DOI: 10.4054/DemRes.2015.32.37

Descriptive Finding

Demographic characteristics of Sardinian centenarian genealogies: Preliminary results of the AKeA2 study

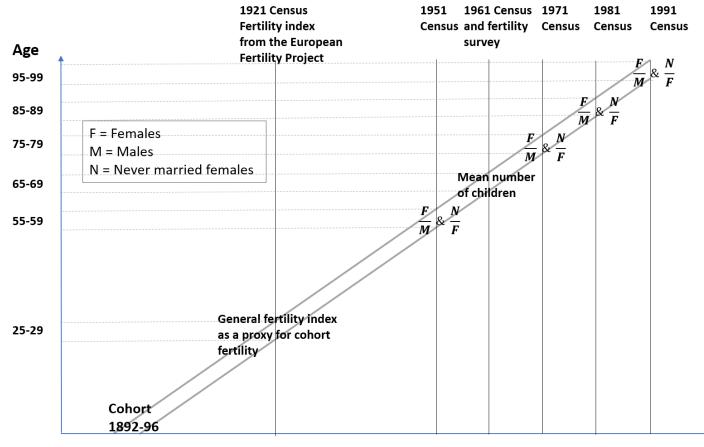
Rosa Maria Lipsi Graziella Caselli Lucia Pozzi Giovannella Baggio

Ciriaco Carru

Claudio Franceschi

James W. Vaupel

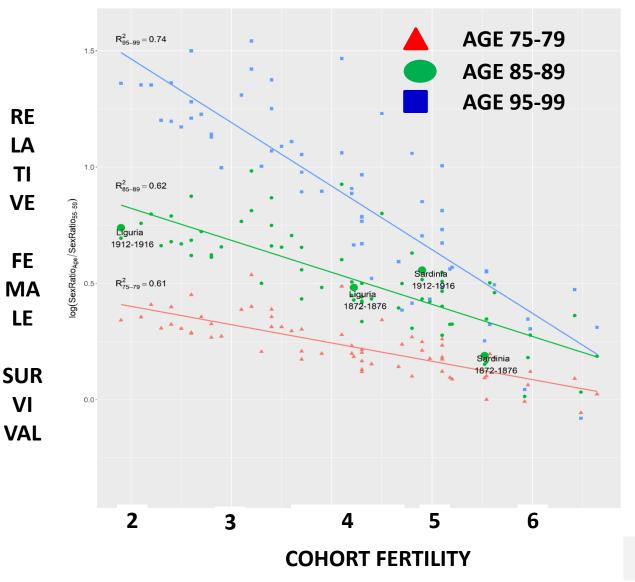
Luca Deiana


for centenarian women, 79 per 1000 of offspring died in the first year of life (infant mortality rate). In contrast, among the offspring of the controls in the same cohorts as the centenarians who died in their 60s or 70s, the infant mortality rate was 118–172 per 1000. Centenarian women also presented a lower infant mortality rate among their children than did women belonging to younger cohorts, particularly for those born between 1911 and 1916. A similar pattern was found for male counterparts (Lipsi et al. 2015). These results suggest a possible familial transmission of a lower mortality from parents to children, produced by shared genetic or socio-cultural factors

The female post-reproductive survival advantage is a relatively recent phenomenon observed only in the cohorts born towards the end of the 19th century, both in Italy and elsewhere.

Collaboration with Giambattista Salinari, Cristina Giuliani, Marco Breschi, Gustavo De Santis

- We used the data published by the Italian Institute of Statistics (ISTAT) to reconstitute the demographic history of eight cohorts born in the years 1862-66, 1872-76, ..., 1932-36 in 16 Italian administrative regions
- For each region and each cohort, we collected aggregate data on cohort fertility, the probability of survival >59 and the FMR at various postreproductive ages, as well as and the proportion of ever-married women.


Sardinia as a demographic laboratory Collaboration with Giambattista Salinari, Cristina Giuliani, Marco Breschi, Gustavo De Santis

Reconstitution of the demographic history of the cohort born in 1892-96

Effect of fertility on the post-reproductive sex ratio in Italy

- Liguria: the forerunner of the fertility transition in Italy.
- Sardinia: the last region to experience its fertility transition.

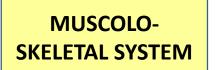
Salinari et al., submitted

Fertility and sex ratio

• Figure 2 highlights two main phenomena:

1. the sex-ratio underwent a temporal evolution, and the regions that had high values of this index in 2001 (north of Italy) had much lower values in the past, comparable to those recorded in Sardinia in 2001. A low FMR at high ages was probably the norm in pre-transitional populations.

2. the influence of fertility on the sex ratio becomes stronger with age. At high ages (95-99 years), fertility alone can explain about three quarter of the overall observed variance in RFS.


PHENOTYPE

NERVOUS SYSTEM

- About 40% of centenarians reports good self-reported quality of life
- About one third of centenarians shows an unimpaired or mildly impaired cognitive status

ENDOCRINE SYSTEM

- Preserved glucose tolerance and insulin sensitivity;
- Lower levels of serum IGF-1
- Higher serum TSH levels compared to younger controls;
- Lower serum free T3 levels than elderly controls;

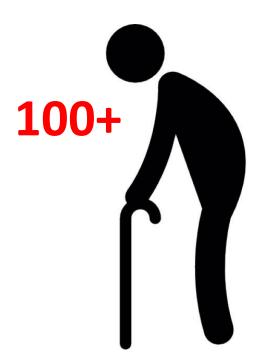
Vitamin D deficiency, low serum calcium;

Hyperparathyroidism and osteopenia

Giuliani, Garagnani & Franceschi, Circulation Res, 2018

SENSORY SISTEM

 About 80% of centenarians has visual or hearing deficits or both


- Lower levels of triglycerides, total cholesterol and LDL;
- High Lipoprotein (a) serum level

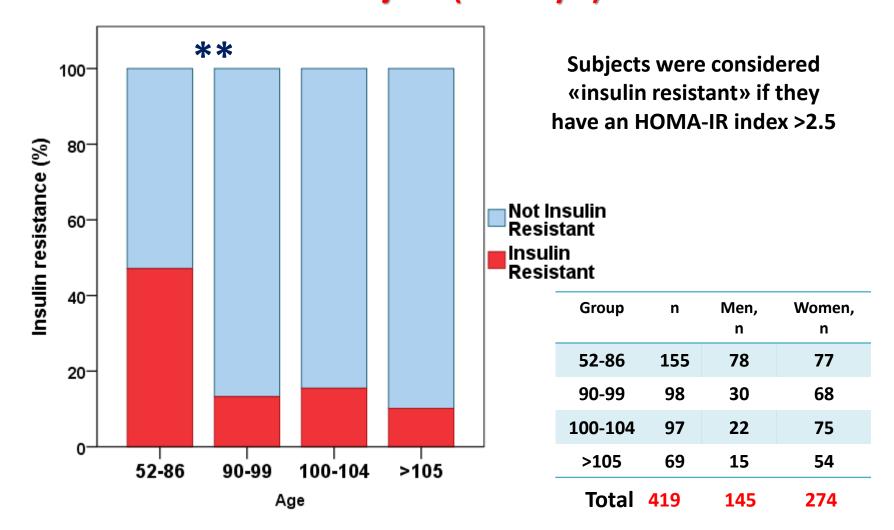
GUT MICROBIOTA (GM)

- Enriched in "pathobionts" (e.g. Proteobacteria);
- Shrinkage of the core GM (dominant symbiotic bacteria)
- Increase in subdominant species (Akkermansia, Bifidobacterium, Christensenellaceae);
- Increased diversity in GM composition

IMMUNE SYSTEM

- Balance between pro- and antiinflammatory markers;
- Well-preserved complement system
- Increase of memory T-cells;
- Strong decrease of naïve CD95⁻ T-cells capable of mounting responses towards novel pathogens.

The immunology of exceptional individuals: the lesson of centenarians


Claudio Franceschi, Daniela Monti, Paolo Sansoni and Andrea Cossarizza

Centenarians are the best example of successful ageing, since they have escaped the major age-associated diseases, and most are in good mental and physical condition. Here, Claudio Franceschi and colleagues discuss how the study of their immune systems reveals that several immune parameters are well conserved, suggesting that a complex remodelling of most immune parameters occurs with age, rather

than a unidirectional deterioration.

Immunology Today. 1995 Jan;16(1):12-6

AGE AND INSULIN RESISTANCE In 419 subjects (52-113yrs)

The percentage of subjects with insulin resistance decreases dramatically after the age of 90.

GENETICS

• <u>A meta-analysis of genome-wide association studies identifies multiple longevity genes.</u>

Deelen J, Evans DS, Arking DE, Tesi N, Nygaard M, Liu X, Wojczynski MK, Biggs ML, van der Spek A, Atzmon G, Ware EB, Sarnowski C, Smith AV, Seppälä I, Cordell HJ, Dose J, Amin N, Arnold AM, Ayers KL, Barzilai N, Becker EJ, Beekman M, Blanché H, Christensen K, Christiansen L, Collerton JC, Cubaynes S, Cummings SR, Davies K, Debrabant B, Deleuze JF, Duncan R, Faul JD, **Franceschi C**, Galan P, Gudnason V, Harris TB, Huisman M, Hurme MA, Jagger C, Jansen I, Jylhä M, Kähönen M, Karasik D, Kardia SLR, Kingston A, Kirkwood TBL, Launer LJ, Lehtimäki T, Lieb W, Lyytikäinen LP, Martin-Ruiz C, Min J, Nebel A, Newman AB, Nie C, Nohr EA, Orwoll ES, Perls TT, Province MA, Psaty BM, Raitakari OT, Reinders MJT, Robine JM, Rotter JI, Sebastiani P, Smith J, Sørensen TIA, Taylor KD, Uitterlinden AG, van der Flier W, van der Lee SJ, van Duijn CM, van Heemst D, Vaupel JW, Weir D, Ye K, Zeng Y, Zheng W, Holstege H, Kiel DP, Lunetta KL, Slagboom PE, Murabito JM.

Nat Commun. 2019 Aug 14;10(1):3669. doi: 10.1038/s41467-019-11558-2.

• <u>Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human</u> Longevity.

Fortney K, Dobriban E, Garagnani P, Pirazzini C, **Monti D, Mari D, Atzmon G**, Barzilai N, **Franceschi C**, Owen AB, Kim SK.

PLoS Genet. 2015 Dec 17;11(12):e1005728.

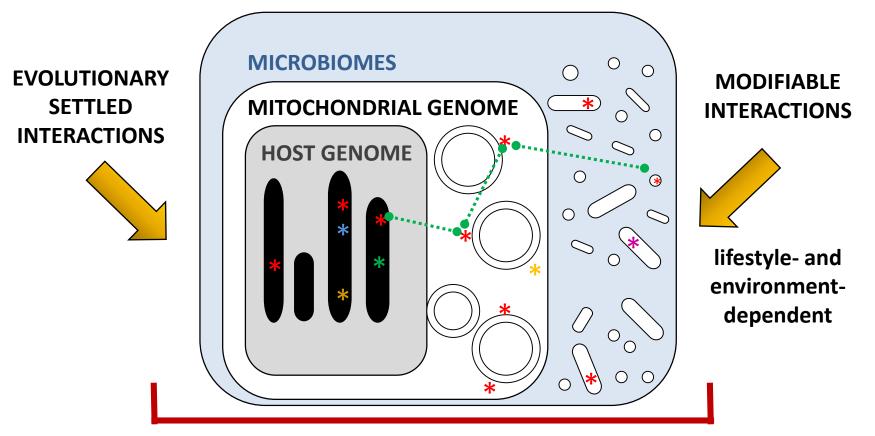
Cardiovascular Aging Compendium

Genetics of Human Longevity Within an Eco-Evolutionary Nature-Nurture Framework

Cristina Giuliani, Paolo Garagnani, Claudio Franceschi

Circulation Research 2018;123:745-772.

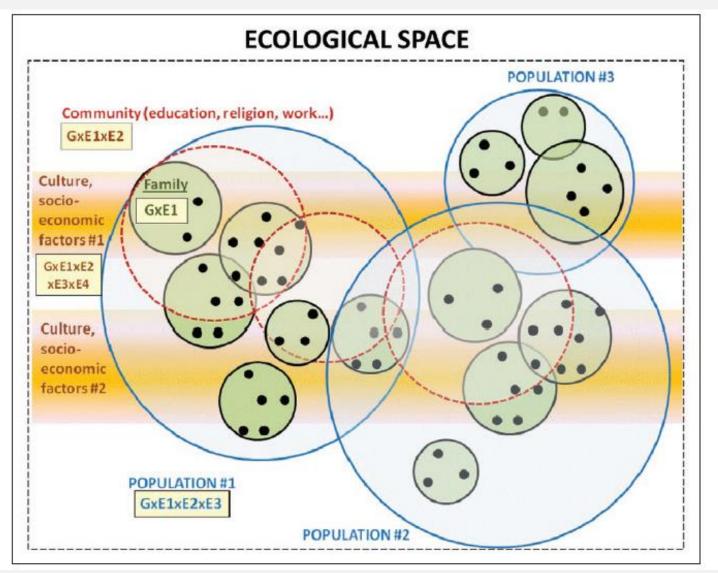
September 14, 2018


Longevity = G x E lifelong G = 3 = Nuclear and Mitochondrial genomes + Microbiomes The capability to reach

the extreme decades of human lifespan seems to be the result of an intriguing mixture of gene-environment interactions. Accordingly, the genetics of human longevity is here described as a highly context-dependent phenomenon, within a new integrated, ecological, and evolutionary perspective, and is presented as a dynamic process, both historically and individually. The available literature has been scrutinized within this perspective, paying particular attention to factors (sex, individual biography, family, population ancestry, social structure, economic status, and education, among others) that have been relatively neglected.

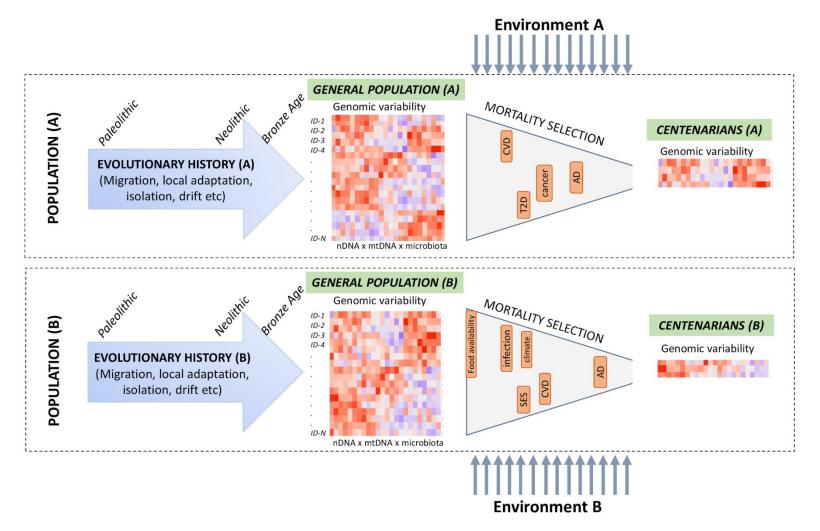
Circ Res. 2018;123:745-772.

Holobiont and metaorganism are terms coined within the framework of ecology, evolution and zoology


H. sapiens as HOLOBIONT/METAORGANISM

The genetics of longevity depends on the interaction among the **3** genomes of *H. sapiens* as a metaorganism, interacting lifelong with the environment

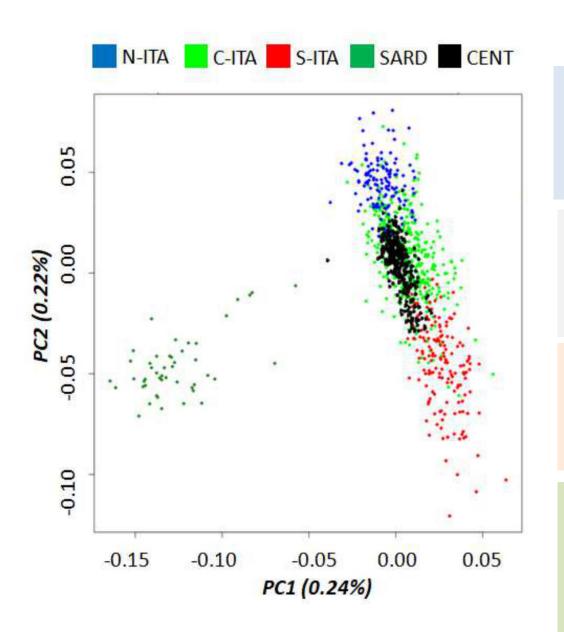
Giuliani, Garagnani & Franceschi, Circulation Res, 2018


The complexity of GxE interactions in humans

Human longevity is highly context- & population-dependent

Giuliani, Garagnani & Franceschi, Circulation Res, 2018

The genetics of human longevity and the critical importance of evolution and context


Franceschi C, Garagnani P, Olivieri F, Salvioli S, Giuliani C. The contextualized genetics of human longevity. *Journal of the American College of Cardiologists*, submitted

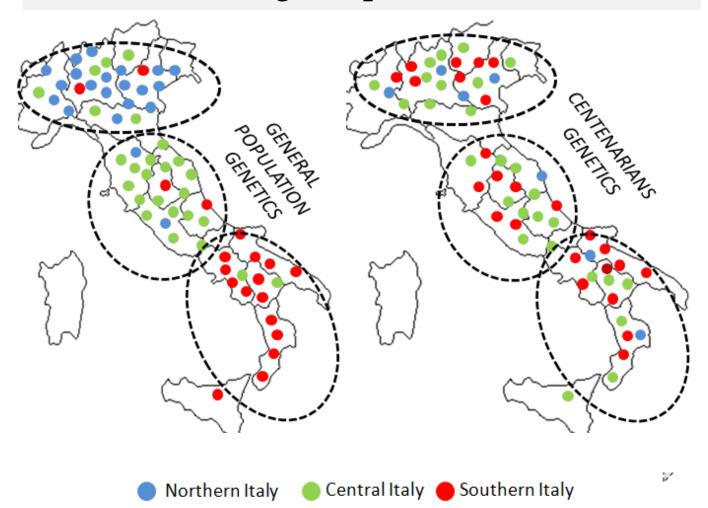
Research Paper

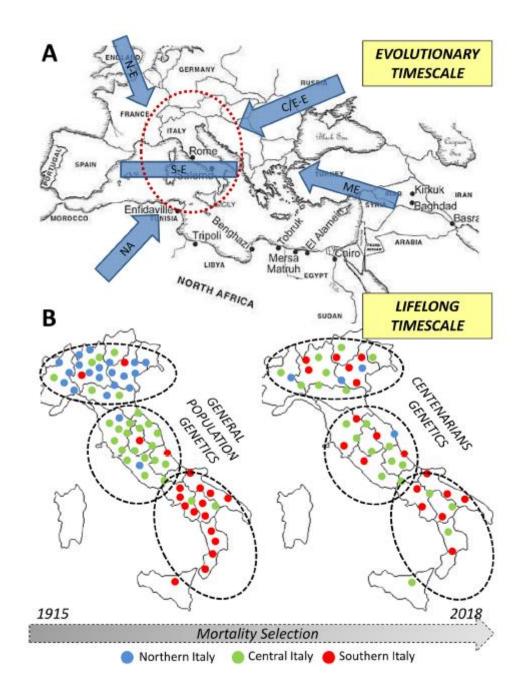
Impact of demography and population dynamics on the genetic architecture of human longevity

Cristina Giuliani^{1,2,3,*}, Marco Sazzini^{1,*}, Chiara Pirazzini⁴, Maria Giulia Bacalini⁴, Elena Marasco^{3,5,6}, Guido Alberto Gnecchi-Ruscone¹, Fang Fang⁷, Stefania Sarno¹, Davide Gentilini⁸, Anna Maria Di Blasio⁸, Paolina Crocco⁹, Giuseppe Passarino⁹, Daniela Mari^{10,11}, Daniela Monti¹², Benedetta Nacmias¹³, Sandro Sorbi^{13,14}, Carlo Salvarani^{15,16}, Mariagrazia Catanoso¹⁵, Davide Pettener¹, Donata Luiselli¹⁷, Svetlana Ukraintseva⁷, Anatoliy Yashin⁷, <u>Claudio Franceschi^{4,21}, Paol</u>o Garagnani^{5,18,19,20,21}

Main results: (i) centenarian genomes are enriched for an ancestral component likely shaped by pre-Neolithic migrations; (ii) centenarians born in Northern Italy unexpectedly clustered with controls from Central/Southern Italy suggesting that Neolithic and Bronze Age gene flow did not favor longevity in this population; (iii) local past adaptive events in response to pathogens and targeting arachidonic acid metabolism became favorable for longevity.

CoreExomeChip (Illumina)


279k genome-wide tag SNPs
245k exomic variants
19k disease-associated
variants


333 centenarians

from the whole Italian peninsula

773 geographicallymatched healthy young Italian samples

Unexpected position of centenarians in the Italian cline (regardless of their microgeographic origins) Centenarians are enriched for an ancient ancestry component equally represented along the peninsula

www.nature.com/scientificreports

Sci Rep. 2016; 6: 21243. Published online 2016 Feb 25

SCIENTIFIC REPORTS

Received: 25 August 2015 Accepted: 20 January 2016 Published: 25 February 2016

OPEN Novel loci and pathways significantly associated with longevity

Yi Zeng^{1,2,†}, Chao Nie^{3,*}, Junxia Min^{4,*}, Xiaomin Liu^{3,*}, Mengmeng Li⁵, Huashuai Chen^{1,6}, Hanshi Xu³, Mingbang Wang³, Ting Ni⁷, Yang Li⁸, Han Yan⁸, Jin-Pei Zhang⁸, Chun Song⁸, Li-Qing Chi⁸, Han-Ming Wang⁸, Jie Dong⁸, Gu-Yan Zheng⁸, Li Lin⁵, Feng Qian⁵, Yanwei Qi^{3,9}, Xiao Liu³, Hongzhi Cao³, Yinghao Wang³, Lijuan Zhang³, Zhaochun Li³, Yufeng Zhou³, Yan Wang³, Jiehua Lu¹⁰, Jianxin Li¹⁰, Ming Qi⁴, Lars Bolund^{3,11}, Anatoliv Yashin¹², Kenneth C. Land¹², Simon Gregory¹³, Ze Yang¹⁴, William Gottschalk¹⁵, Wei Tao¹⁶, Jian Wang^{3,17}, Jun Wang^{3,18}, Xun Xu³, Harold Bae¹⁹, Marianne Nygaard²⁰, Lene Christiansen²⁰, Kaare Christensen²⁰, Claudio Franceschi²¹, Michael W. Lutz¹⁵, Jun Gu¹⁶, Qihua Tan²⁰, Thomas Perls²², Paola Sebastiani²³, Joris Deelen²⁴, Eline Slagboom²⁴, Elizabeth Hauser¹³, Huji Xu⁵, Xiao-Li Tian^{8,†}, Huanming Yang^{3,17,†} & James W. Vaupel²⁵

GENETICS of Chinese, European and USA 100+

- 2178 Han Chinese centenarians (mean age 102.7 years) and 2299 mid-age controls (mean age 48.4 years)
- Compared with European 90+ sibs of EC-funded GEHA project (Genetics of Healthy Ageing 2005-2010; Coordinator: C. Franceschi) and 100+ of New England Centenarian (NEC) study

Two top loci emerged as significant

- rs2069837 (chr 7p15.3, *IL-6*, *P* = 1.80x10-9)
- rs2440012 (chr 13q12.12, ANKRD20A9P, P = 3.73x10-8)

rs2069837- IL-6 alone explained 1.0% of the variance

rs2149954 (T) in chr 5q33.3 was confirmed

ANKRD20A9P

is a pseudogene that is affiliated with the long non-coding RNAs (IncRNA) class.

A gender-dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity

Massimiliano Bonafè¹, Fabiola Olivieri², Luca Cavallone², Simona Giovagnetti², Francesca Marchegiani², Maurizio Cardelli², Carlo Pieri², Maurizio Marra², Roberto Antonicelli², Rosmarie Lisa², Maria Rosaria Rizzo³, Giuseppe Paolisso³, Daniela Monti⁴ and Claudio Franceschi^{1,}

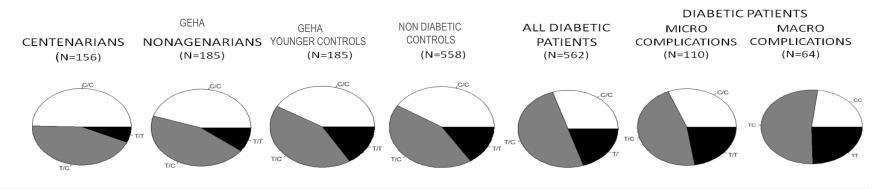
Current literature indicates that elevated IL-6 serum levels are associated with diseases, disability and mortality in the elderly. In this paper, we studied the IL-6 promoter genetic variability at –174 C/G locus and its effect on IL-6 serum levels in a total of <u>700 people from 60</u> to <u>110 years of age, including 323 centenarians</u>. We found that the proportion of homozygotes for the G allele at –174 locus decreases in centenarian males, but not in centenarian females. Moreover, we found that, only among males, homozygotes for the G allele at –174 locus have higher IL-6 serum levels in comparison with carriers of the C allele. On the whole, our data suggest that those individuals who are genetically predisposed to produce high levels of IL-6 during aging, *i.e.* –174 locus GG homozygous men, are disadvantaged for longevity.

CENTENARIANS AS SUPER CONTROLS

www.impactaging.com

AGING, May 2013, Vol. 5 No 5

Research Paper


Centenarians as super-controls to assess the biological relevance of genetic risk factors for common age-related diseases: A proof of principle on type 2 diabetes

Paolo Garagnani^{1,2,3}*, Cristina Giuliani⁴*, Chiara Pirazzini^{1,2}, Fabiola Olivieri^{5,6}, Maria Giulia Bacalini^{1,2}, Rita Ostan^{1,2}, Daniela Mari⁷, Giuseppe Passarino⁸, Daniela Monti⁹, Anna Rita Bonfigli¹⁰, Massimo Boemi¹⁰, Antonio Ceriello^{11,12}, Stefano Genovese¹³, Federica Sevini^{1,2}, Donata Luiselli⁴, Paolo Tieri¹⁴, Miriam Capri^{1,2}, Stefano Salvioli^{1,2}, Jan Vijg^{15,17}, Yousin Suh^{15,16,17,18}, Massimo Delledonne^{19,20}, Roberto Testa²¹, and Claudio Franceschi¹

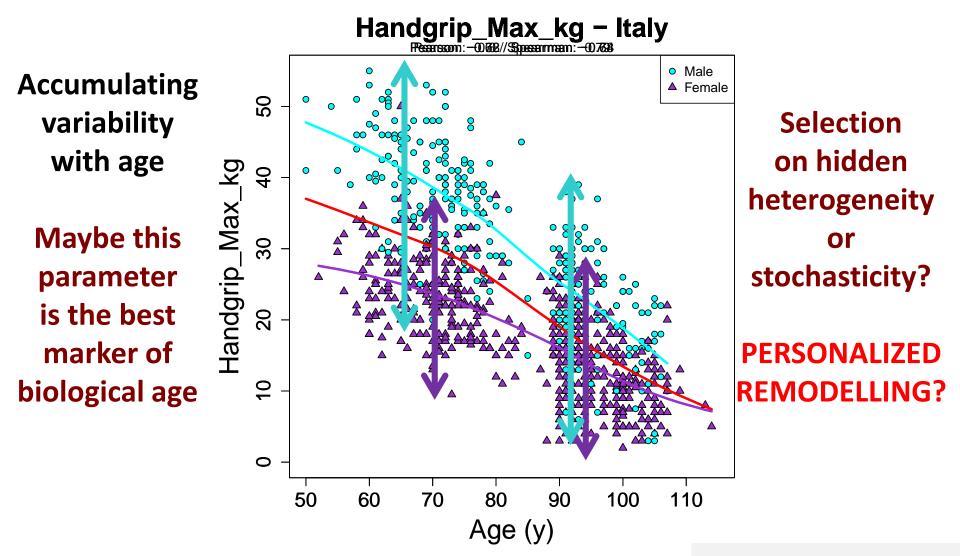
100+ supercontrols for T2D

in a total of 1,646 subjects, including n.156 100+ and n.185 90+

rcf7l2, ddah1, irs1, terc, igf2bp, apM1, htert, epo, cat, kcnj11, kcnq1, hif-1α, fto rs7903146 in the TCF7L2 gene

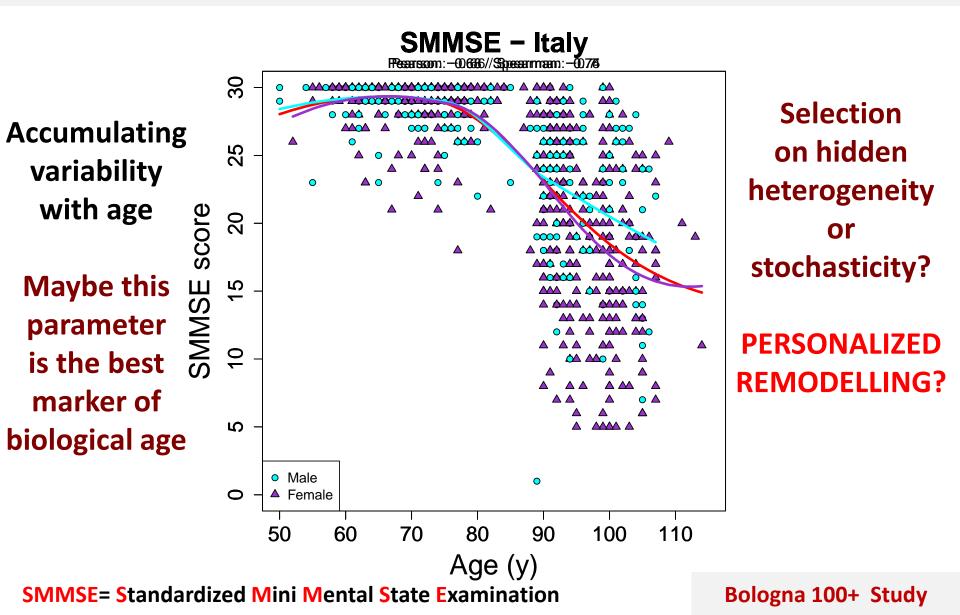
rs 7903146 – TCF7L2											
	Genotypes frequencies (%)										
СС	49.7	45.1	41.6	41.1	30.0	29	23.4				
тс	43.6	44.6	42.2	43.0	50.0	50	53.1				
TT	6.7	10.3	16.2	15.8	20.0	21	23.4				
	Allele frequencies (%)										
С	71.5	67.4	62.7	62.6	55	54.3	51.8				
Т	28.5	32.6	37.3	37.4	45	45.7	48.2				

SCIENTIFIC REPORTS


OPEN Explicating heterogeneity of complex traits has strong potential for improving GWAS efficiency

Received: 11 January 2016 Accepted: 28 September 2016 Published: 14 October 2016

Alexander M. Kulminski, Yury Loika, Irina Culminskaya, Konstantin G. Arbeev, Svetlana V. Ukraintseva, Eric Stallard & Anatoliy I. Yashin


HETEROGENEITY

Heterogeneity of Handgrip in elderly and centenarians (males and females)



Bologna 100+ Study

Heterogeneity of SMMSE in elderly and centenarians (males and females)

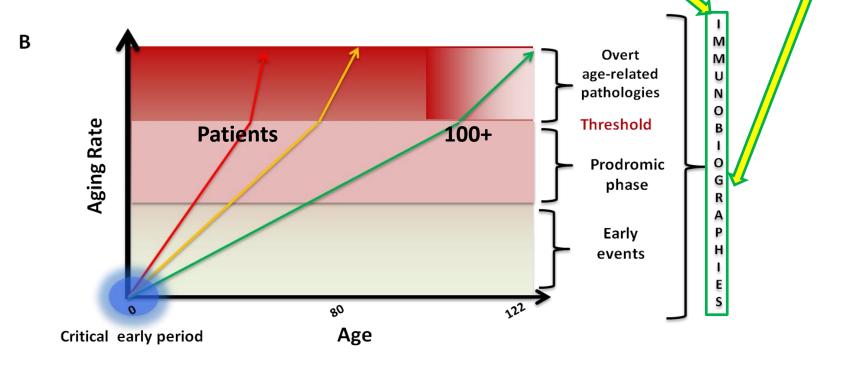
Heterogeneity of SMMSE in elderly and centenarians (males and females)

Age-related diseases can be conceptualized as "accelerated aging"

REVIEW published: 12 March 2018 doi: 10.3389/fmed.2018.00061

The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates

Claudio Franceschi¹, Paolo Garagnani^{2,3,4,5}, Cristina Morsiani², Maria Conte², Aurelia Santoro^{2,6*}, Andrea Grignolio⁷, Daniela Monti⁸, Miriam Capri^{2,6†} and Stefano Salvioli^{2,6†}


¹ Institute of Neurological Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy, ² Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy, ³ Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden, ⁴ Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy, ⁵ CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy, ⁶ Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy, ⁷ Unit and Museum of History of Medicine, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy, ⁸ Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy

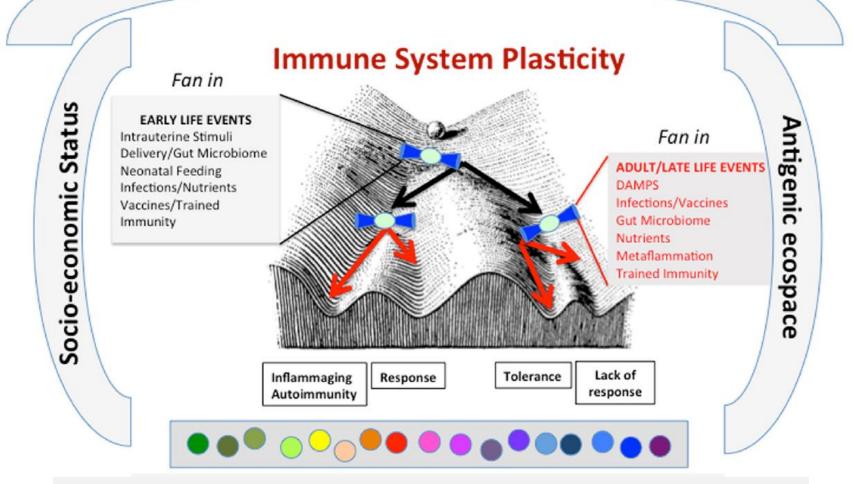
Is aging a disease?

- Aging, Age-Related Diseases (ARDs) and Geriatric Syndromes (GSs) are part of a continuum without precise boundaries.
- The two extremes are:

 i) centenarians characterized by decelerated aging
 ii) ARDs/GSs patients characterized by accelerated aging.

 ARDs and GSs can be considered manifestation of accelerated aging. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her **genetic background** interacting **lifelong** with environmental and **lifestyle** factors.

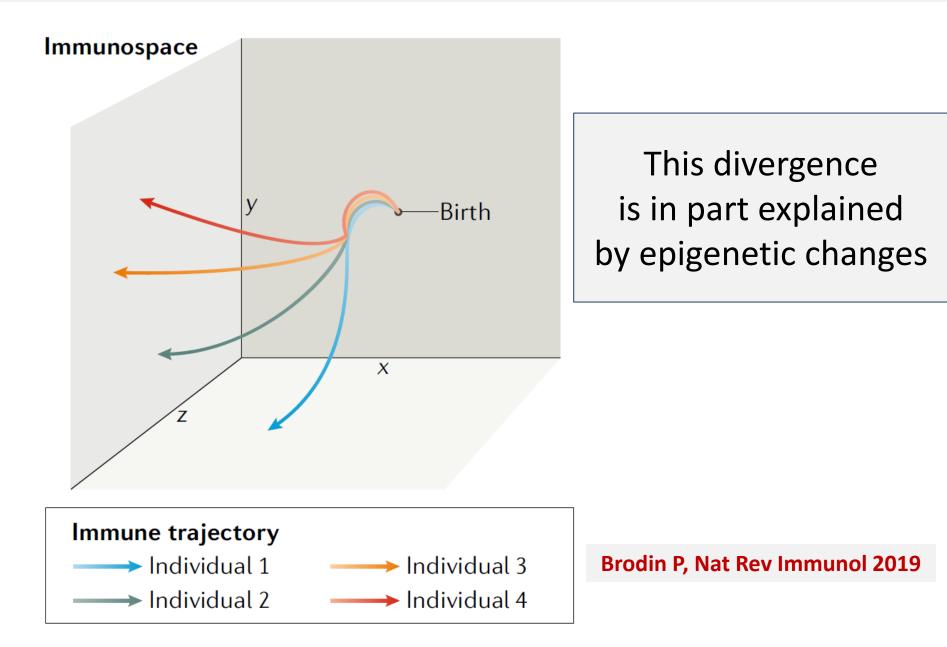
Franceschi et al., Nat Rev Endocrinol, 2018


Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity

Claudio Franceschi^{1†}, Stefano Salvioli^{2,3*†}, Paolo Garagnani^{2,3}, Magda de Eguileor⁴, Daniela Monti^{5‡} and Miriam Capri^{2,3‡}

¹Institute of Neurological Sciences of Bologna IRCCS, Bologna, Italy, ²Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy, ³Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy, ⁴Department of Biotechnology and Life Science, University of Insubria, Varese, Italy, ⁵Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy

Aging/Inflammaging beyond chronological age


INDIVIDUAL IMMUNOBIOGRAPHY

Heterogeneity of Immune Responsiveness & Inflammaging at Population Level

Franceschi et al., Front Immunol 2017

Diverging trajectories of immune system with age

HETEROGENEITY Aging beyond chronological age

EPIGENETICS GLYCOMICS PROTEOMICS

105+ and their offspring are younger than their chronological age

www.impactaging.com

AGING, December 2015, Vol 7 N 12

Research Paper

Decreased epigenetic age of PBMCs from Italian semisupercentenarians and their offspring

Steve Horvath^{1,2*}, Chiara Pirazzini^{3,4*}, Maria Giulia Bacalini^{3,4,5}, Davide Gentilini⁶, Anna Maria Di Blasio⁶, Massimo Delledonne^{5,7}, Daniela Mari^{8,9}, Beatrice Arosio^{8,9}, Daniela Monti¹⁰, Giuseppe <u>Passarino¹¹</u>, Francesco De Rango¹¹, Patrizia D'Aquila¹¹, Cristina Giuliani¹², Elena Marasco^{3,4}, Sebastiano Collino¹³, Patrick Descombes¹⁴, <u>Paolo Garagnani^{3,4,15,§}</u>, and <u>Claudio Franceschi^{3,4,16,17,§}</u>

THE EPIGENETIC CLOCK

Steve Horvath (UCLA) in 82 databases on DNA methylation data obtained by Illumina platforms identified in the whole genome 353 CpGs whose methylation level is a MULTI-TISSUES PREDICTOR OF AGE which allows to estimate DNA METHYLATION AGE vs CHRONOLOGICAL AGE

Steve Horvath DNA methylation age of human tissues and cell types *Genome Biology* 2013, 14:R115

Correlation 0.97 between DNAm age and chronol age error = 2.9 years

Whole genome DNA methylation profile of 105+

Illumina Infinium HumanMethylation450 BeadChip (485,577 CpG/genoma)

	Milano **	Bologna *	Calabria ***	TOTAL	Mean Age (± std)	Male (N)	Female (N)
105+	29	33	20	82	105.5 ± 1.7	18	64
Offspring	28	22	13	63	69.8 ± 7.2	22	25
Controls	17	16	14	47	71.6 ± 8.0	26	37
TOTAL	74	71	47	192			

* PI: Prof. Claudio Franceschi, DIMES, UNIBO

 ** PI: Prof. Daniela Mari, DIP. DI SCIENZE CLINICHE E DI COMUNITA', UNIVERSITÀ DI MILANO
 ***PI: Prof. Giuseppe Passarino, DIP. DI BIOLOGIA, ECOLOGIA E SCIENZE DELLA TERRA, UNIVERSITÀ DELLA CALABRIA

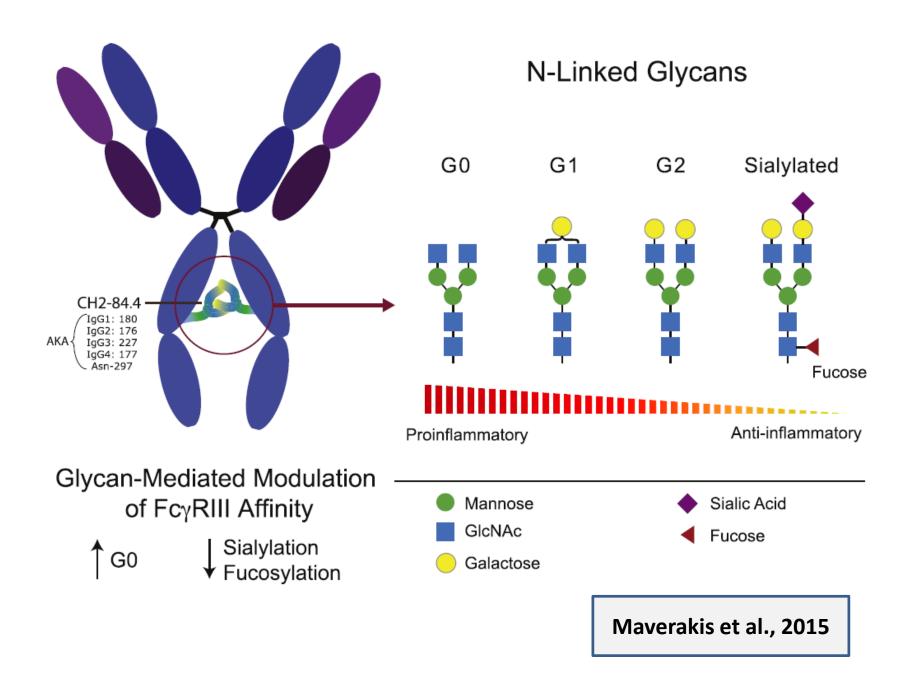
DATA ANALYSIS:

Paolo Garagnani, Chiara Pirazzini, Steve Horvath

DNAmeth age *versus* Chronological age in 105+ and their offspring

According to the Horvath's DNAmet clock:

- semi-supercentenarians are on average
 8.7 years younger than expected based on chronological age;
- 105+ offspring are 5.2 years younger than age-matched controls (p=0.00051)
- In offspring' controls DNAmethyl age and chronological age overlap


GLYCOMICS

N-glycans profiling appears to be one of the most robust biomarker of biological age

N-Glycomic biomarkers of biological ageing and longevity: a link with inflammaging

Fabio Dall'Olio, Valerie Vanhooren, Cuiying C Chen, P. Eline Slagboom, Manfred Wuhrer & Claudio Franceschi

Ageing Research Reviews 2012

Heterogeneity and non-linearity of the human proteome

Undulating changes in human plasma proteome across lifespan are linked to disease

Benoit Lehallier^{1,2,3*}, David Gate^{1,2,3,4}, Nicholas Schaum⁵, Tibor Nanasi^{1,2,3,6}, Song Eun Lee^{1,2,3,4}, Hanadie Yousef^{1,2,3,4}, Patricia Moran Losada^{1,2,3}, Daniela Berdnik^{1,2,3,4}, Andreas Keller⁷, Joe Verghese^{8,9}, Sanish Sathyan^{8,9}, <u>Claudio Franceschi^{10,11}</u>, Sofiya Milman^{8,12}, Nir Barzilai^{8,12}, <u>Tony Wyss-Coray</u>^{1,2,3,4}*

¹Department of Neurology and Neurological Sciences, <u>Stanford University, Stanford, CA, USA</u> ²Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA

Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA

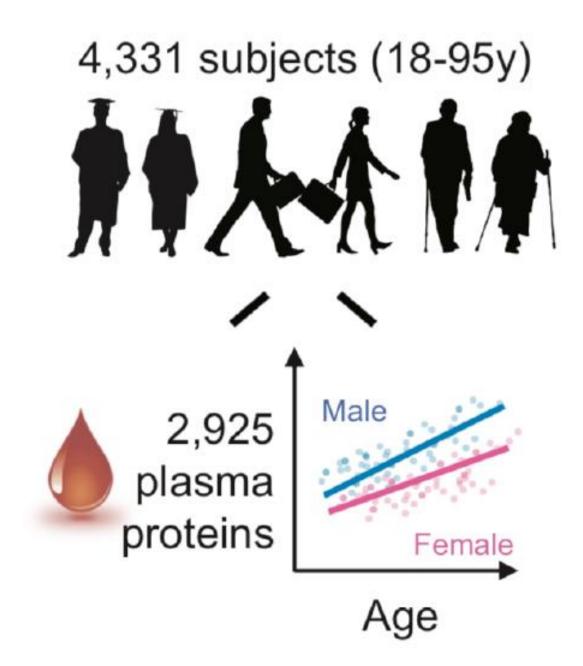
⁴Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA, USA

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA

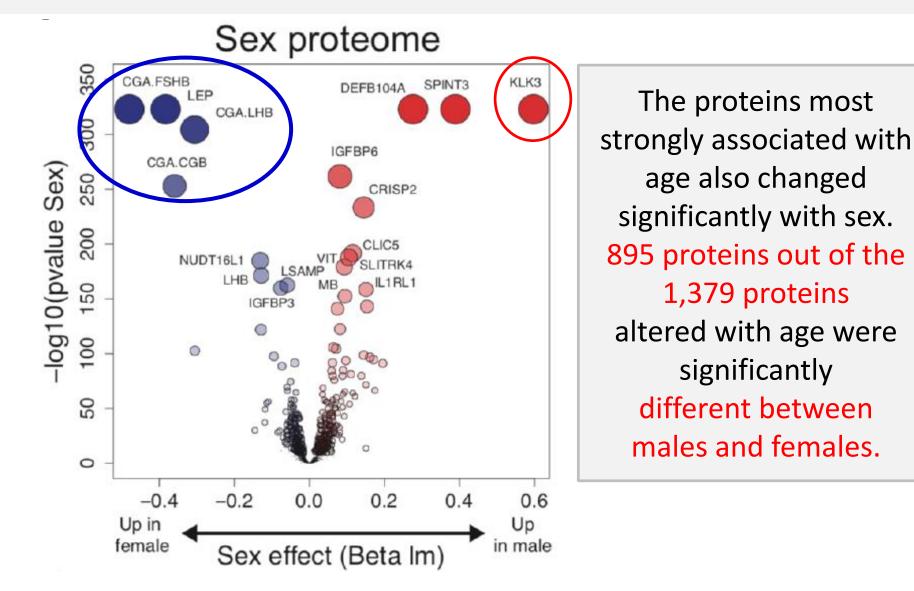
[°]Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences Research Centre for Natural <u>S</u>ciences, Budapest, Hungary

Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.

⁸Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA

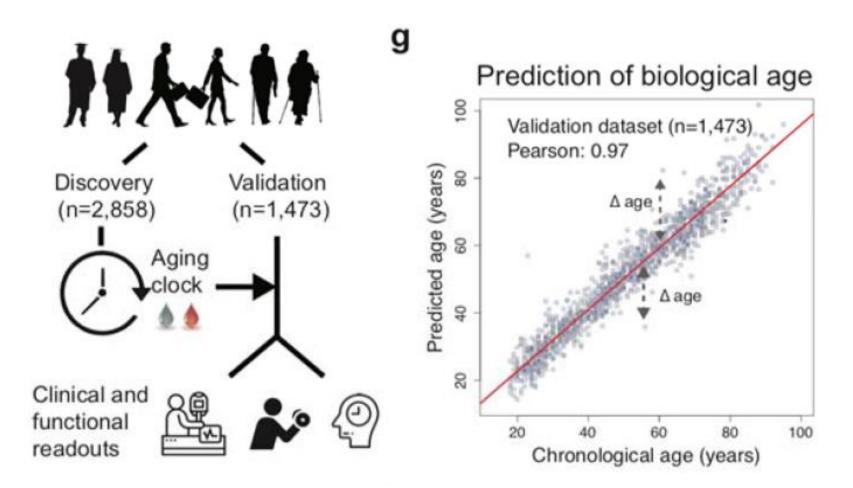

⁹Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA

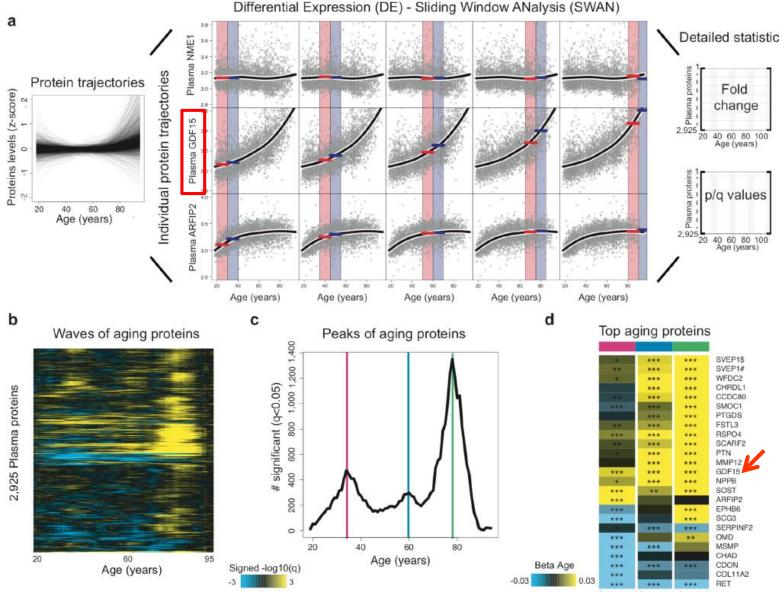
¹⁰University of Bologna, Bologna, Italy


¹National Research Lobachevsky State University of Nizhny Novgorod, Russia

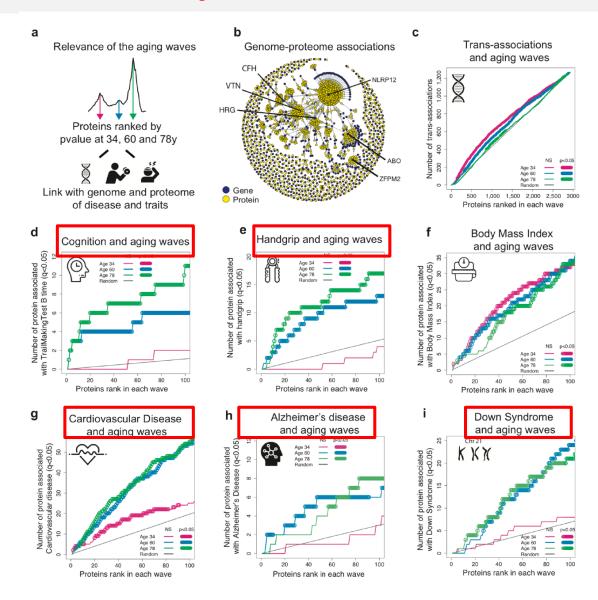
¹²Department of Genetics. Albert Einstein College of Medicine. Bronx. NY. USA

Nature Medicine, accepted


Proteins most strongly changed with sex included well-known follicle stimulating hormone (CGA FSHB), human chorionic gonadotropin (CGA CGB), luteinizing hormone (CGA LHB) and prostate-specific antigen (KLK3).


Aging is different in men and women

Our results are aligned with a growing number of studies demonstrating that males and females age differently


A sex-independent plasma proteomic clock consisting of 373 proteins

3 crests at ages 34, 60 and 78

Waves of aging proteins are differentially linked to the genome and the proteome of traits and disease

INFLAMMAGING: an example of adaptation/remodeling

The Inflammatory Theory of Aging

Inflamm-aging

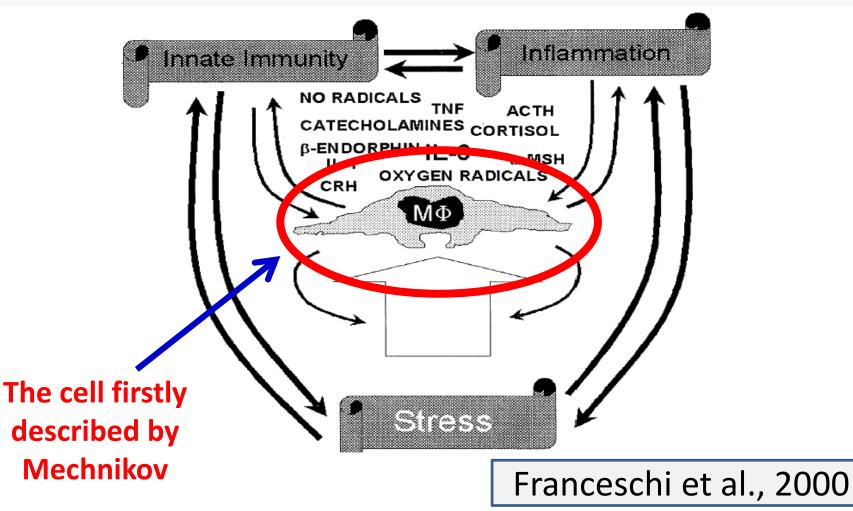
An Evolutionary Perspective on Immunosenescence

CLAUDIO FRANCESCHI,^{*a,b,e*} MASSIMILIANO BONAFÈ,^{*a*} SILVANA VALENSIN,^{*a*} FABIOLA OLIVIERI,^{*b*} MARIA DE LUCA,^{*d*} ENZO OTTAVIANI,^{*c*} AND GIOVANNA DE BENEDICTIS^{*d*}

^aDepartment of Experimental Pathology, University of Bologna, Bologna, Italy

^bDepartment of Gerontological Research, Italian National Research Center on Aging (INRCA), Ancona, Italy

^cDepartment of Animal Biology, University of Modena and Reggio Emilia, Modena, Italy ^dDepartment of Cell Biology, University of Calabria, Calabria, Italy

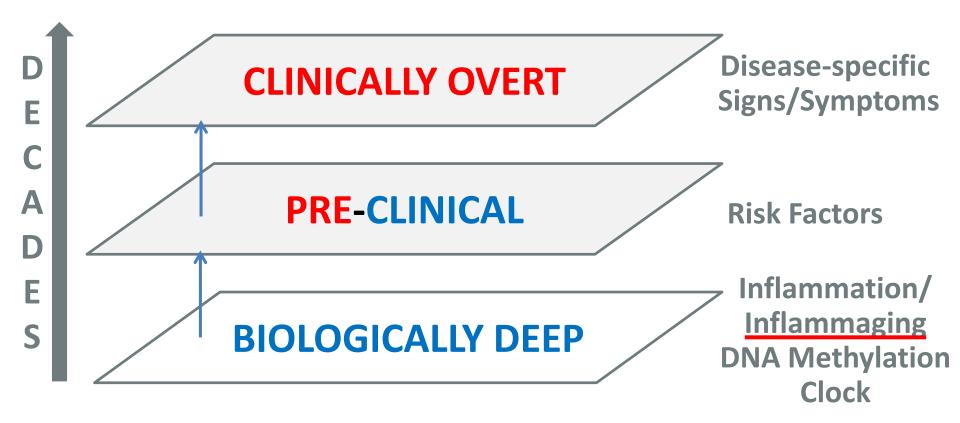

"chronic", "low grade", "sterile"

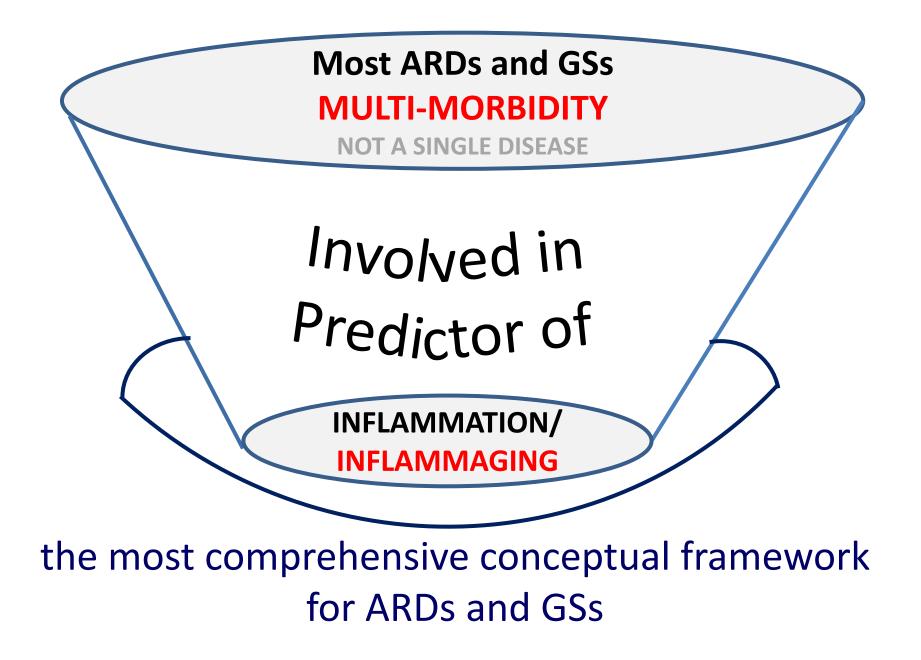
Inflammaging is based on studies on the evolution of immune response and stress from invertebrates to mammals

2645 citations (01/11/2019)

Inflammaging is macrophage-centered

Inflammaging fits the Antagonistic Pleiotropy


Franceschi, Nutr Rev 2007


Inflammation is the most important/beneficial, adaptive, evolutionary-conserved response to «damage stimuli», and is crucial for repair/survival When overstimulated, particularly in the post-reproductive period of life, inflammation can become chronic and detrimental

Franceschi et al., Nat Rev Endocrinol, 2018

ARDs and GSs Layers

Inflammaging and Age-Related Diseases (ARD)

Advances in Geroscience: Impact on Healthspan and Chronic Disease Perspective

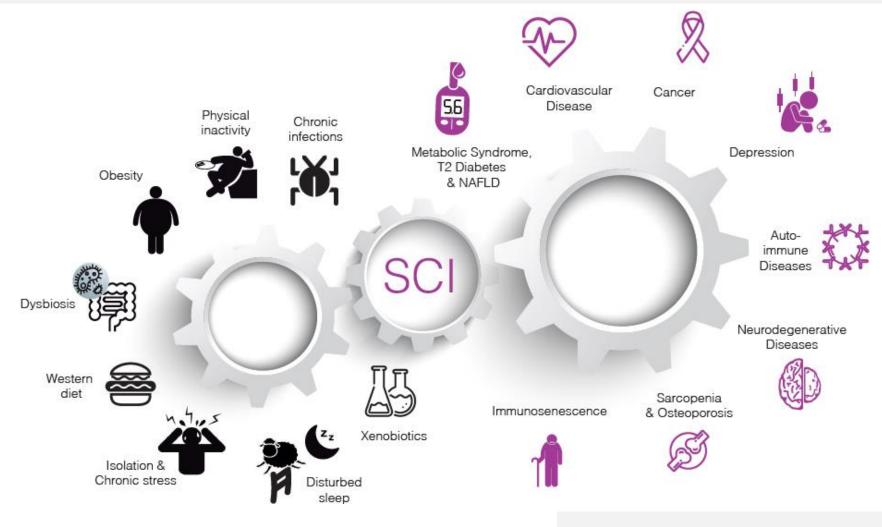
Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases

Claudio Franceschi^{1,2} and Judith Campisi^{3,4}

¹DIMES, Department of Experimental, Diagnostic and Specialty Medicine and CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Italy. ²IRCCS Institute of Neurological Sciences, and CNR-ISOF, Bologna, Italy. ³Buck Institute for Research on Aging, Novato, California. ⁴Life Sciences Division, Lawrence Berkeley National Laboratory, California.

Address correspondence to Claudio Franceschi, MD, DIMES, Department of Experimental, Diagnostic and Specialty Medicine and CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Via S. Giacomo 12, 40126 Bologna, Italy. Email: claudio.franceschi@unibo.it

J Gerontol A Biol Sci Med Sci 2014 June;69(S1):S4–S9


1290 citations (01/11/2019)

Chronic Inflammation in the Etiology of Disease Across the Lifespan

David Furman^{1,2,3,4}, Judith Campisi^{1,5}, Eric Verdin¹, Pedro Carrera-Bastos⁶, Sasha Targ^{4,7}, <u>Claudio Franceschi⁸</u>, Luigi Ferrucci⁹, Derek W. Gilroy¹⁰, Alessio Fasano¹¹, Gary W. Miller¹², Andrew H. Miller¹³, <u>Alberto Mantovani^{14,15,16}</u>, Cornelia M. Weyand¹⁷, Nir Barzilai¹⁸, Jorg J. Goronzy¹⁹, Thomas A. Rando^{19,20,21}, Rita B. Effros²², Alejandro Lucia^{23, 24}, Nicole Kleinstreuer^{25, 26}, George M. Slavich²⁷

Nature Medicine, accepted

SCI=Systemic Chronic Inflammation A variety of causes/triggers and outcomes (multimorbidity)

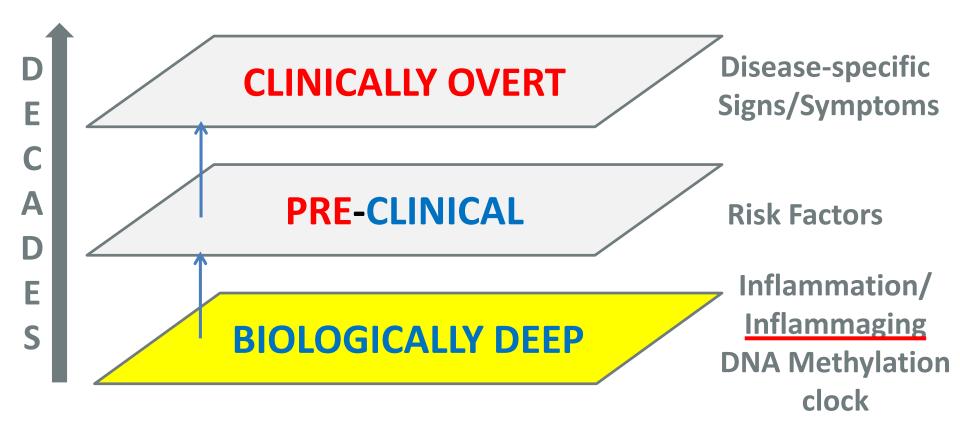
Furman et al., 2019

REVIEWS

Inflammaging: a new immunemetabolic viewpoint for age-related diseases

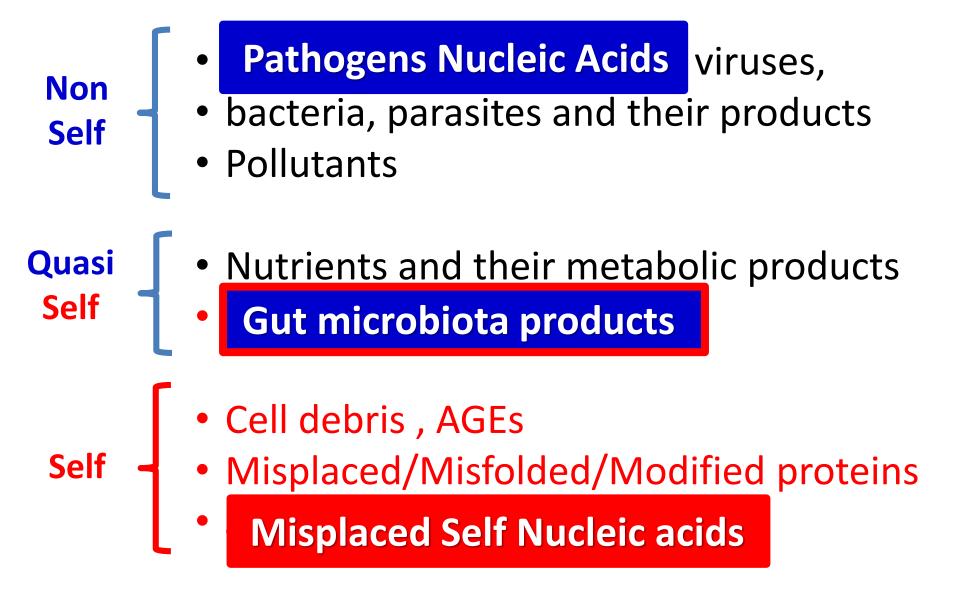
Claudio Franceschi^{1,8}, Paolo Garagnani^{2,3,4,5,8}, Paolo Parini³, Cristina Giuliani^{6,7*} and Aurelia Santoro^{2,7}

NATURE REVIEWS | ENDOCRINOLOGY 2018 Jul 25


Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty

Luigi Ferrucci^{1*} and Elisa Fabbri²

NATURE REVIEWS | CARDIOLOGY VOLUME 15 | SEPTEMBER 2018 | 505


Abstract | Most older individuals develop inflammageing, a condition characterized by elevated levels of blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic susceptibility, central obesity, increased gut permeability, changes to microbiota composition, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia

Levels of ARDs and GSs

INFLAMMAGING & GARB-AGING the role of molecular garbage

Major inflammatory stimuli

A change of paradigm: the enemy from within

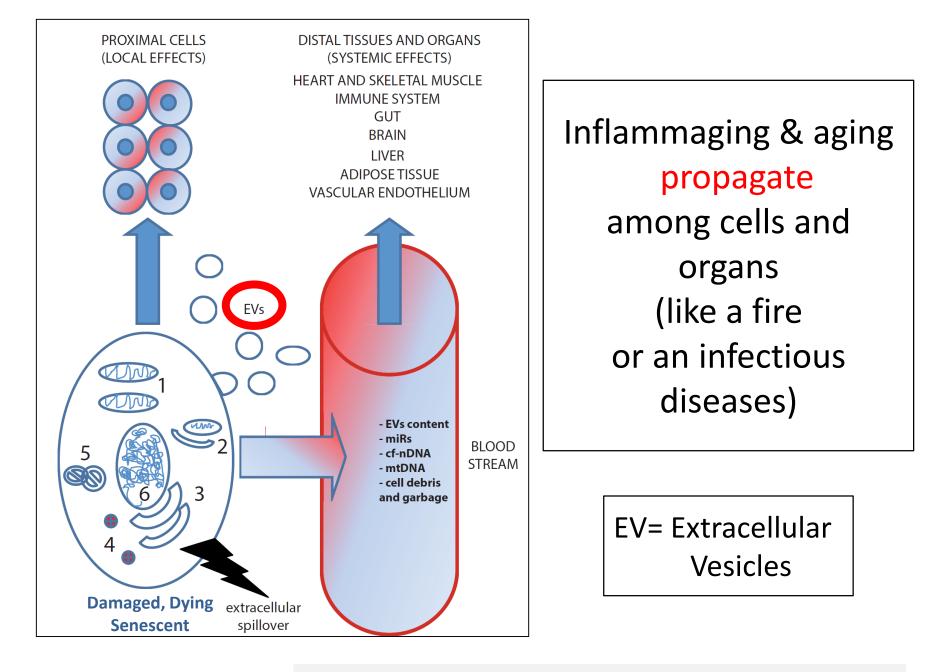
Trends in Endocrinology & Metabolism 2017

Review

Inflammaging and 'Garb-aging'

Claudio Franceschi,¹ Paolo Garagnani,^{2,3} Giovanni Vitale,^{4,5} Miriam Capri,^{2,3,‡,*} and Stefano Salvioli^{2,3,‡}

CELLULAR AND MOLECULAR GARBAGE: cell debris (resulting from cell death), misplaced/altered/oxidized molecules, Gut Microbiota products, internal exposome metabolic products...

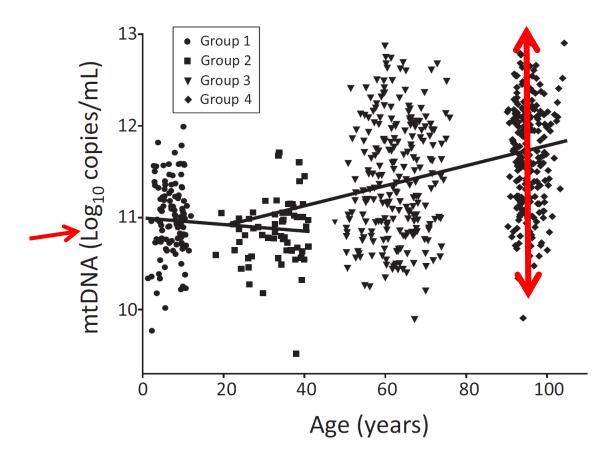

Endogenous/Self Molecular Garbage

- In human body over 50-70 billion cells die each day;
- NECROPTOSIS & PYROPTOSIS increase with age; The overall result is:
- an increased production of DAMPs (Damage-Associated Molecular Patterns);
- a large misplacing of proteins and nucleic acids.
 The clearance of such molecular garbage is imperative!

Normal cell components (Self) sensed as inflammatory DAMPs when misplaced

DAMPS	Origin	Engaged	REF	
		receptors		
mtDNA	Mitochondria	TLR9, NLRPs	[53,54,58]	
N-formyl peptides	Mitochondria	Formyl peptide	[106]	
		receptor-1, NLRPs		
Cardiolipin	Mitochondria	NLRPs	[56]	
Histones	Nucleus	TLRs	[107]	
High Mobility Group Box 1 protein	Nucleus	RAGE, NLRPs,	[57,74]	
(HMGB1)		TLR4		
Nuclear DNA (CpGs)	Nucleus	TLR9	[108]	
Heat Shock Proteins (e.g. HSPA1A,	Cytoplasm, mitochondria,	TLR2, TLR4,		
HSP90AA1); ER chaperons (CRT,	Endoplasmic reticulum	NLRPs	[45,109,110]	
ERp57, GP96)				
Cathepsin B	Lysosomes	NLRPs	[58]	
Triphosphate nucleotides (ATP, UTP)	Cytoplasm	NLRPs	[45]	
S100 proteins (including S100a8, a9	Cytoplasm – granules	RAGE, TLR4, TLR9	[57,75]	
and a12)	(neutrophils)			
Lipids (fatty acids, ceramides)	Cytoplasm, membranes	TLR4, NLRPs	[58,111]	
Crystals (e.g. monosodium urate,	Cytoplasm	NLRPs, TLR2,	[45,57]	
cholesterol crystals, calcium		TLR4, CD14		
pyrophosphate dihydrate)				
Hyaluronans	Extracellular matrix	NLRPs	[45]	
Altered N-glycans	Serum proteins	DC-SIGN, MBR	[112]	

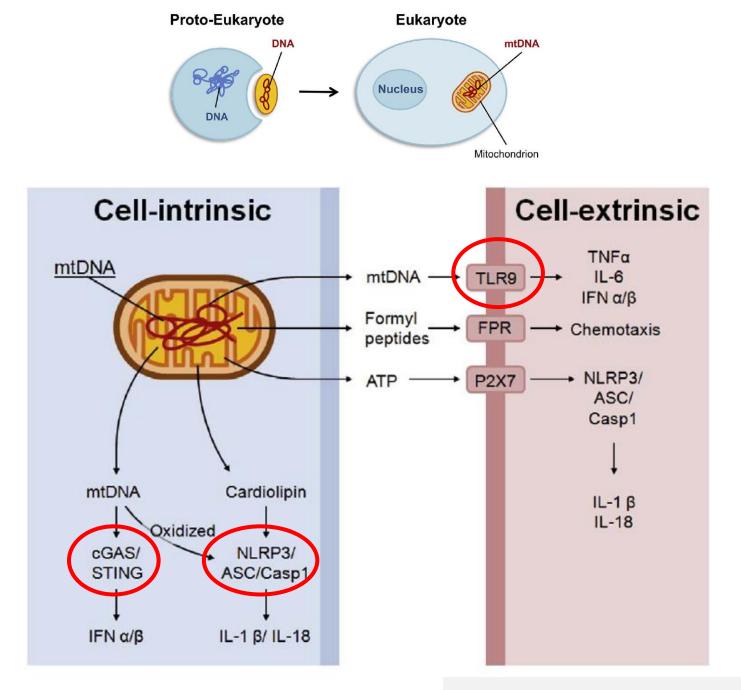
Franceschi et al., Trends in Endocrinol. Metab. 2017


Franceschi et al., Trends in Endocrinology and Metabolism, 2017

Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for "inflamm-aging"

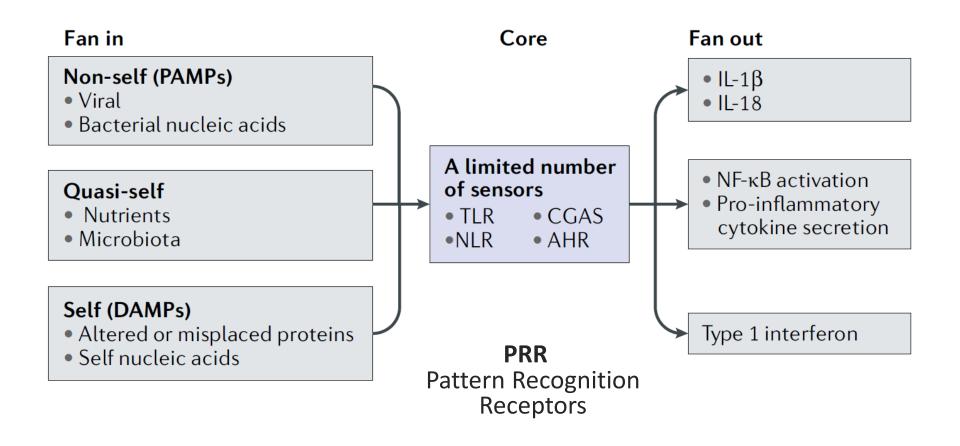
Marcello Pinti^{*1}, Elisa Cevenini^{*2,3}, Milena Nasi⁴, Sara De Biasi⁴, Stefano Salvioli^{2,3}, Daniela Monti⁵, Stefania Benatti¹, Lara Gibellini⁴, Rodolfo Cotichini^{6,7}, Maria Antonietta Stazi⁶, Tommaso Trenti⁸, Claudio Franceschi^{2,3} and Andrea Cossarizza⁴

- Circulating mtDNA is a powerful inflammatory stimulus contributing to inflammaging.
- The number of copies of circulating mtDNA is significantly correlated between siblings, suggesting that it is a familial/genetic trait.


Age-related increase of circulating mtDNA plasma level in the different age groups. Data are generated from <u>831 samples</u>, and are expressed as log₁₀ mtDNA copies/mL of plasma.

90+ siblings belonging to 191 sibships

Linear Regression for log 10 mt DNA by age


	Groups	Num	ber of obs.	R-squared	Beta Co eff.	Age p	o 95% Cl	
	Group 1 and 2		171	0.0215	-0.0045	0.055	-0.0091 0.0001	•
(Group 2, 3 and 4	1	516	0.1590	0.0115	<0.001	0.0092 0.0138	
							P	

Rongvaux, A., Mitochondrion 2017

Molecular garbage converges on a limited number of DANGER/DAMAGE SENSORS

characterized by a high degree of "DEGENERACY"

Franceschi et al., Nat Rev Endocrinol, 2018

autoimmune INFLAMMAGING AGING autoinflammatory

Centenarians have a peculiar INFLAMMAGING Fulvia, 109 years Sarzana (Italy)

We surmised that a possible main reason why 100+ are 100+ is because they are capable of reaching an optimal balance between **<u>pro-</u>** (CRP, IL-6, TNF α) & <u>anti</u>-inflammatory (TGFβ, Cortisol, IL-1RA, **Adiponectin)** molecules

Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans

Claudio Franceschi ^{a,b,c,e,*}, Miriam Capri ^a, Daniela Monti ^d, Sergio Giunta ^e, Fabiola Olivieri ^e, Federica Sevini ^b, Maria Panagiota Panourgia ^b, Laura Invidia ^a, Laura Celani ^b, Maria Scurti ^b, Elisa Cevenini ^b, Gastone C. Castellani ^{b,f}, Stefano Salvioli ^{a,b,c}

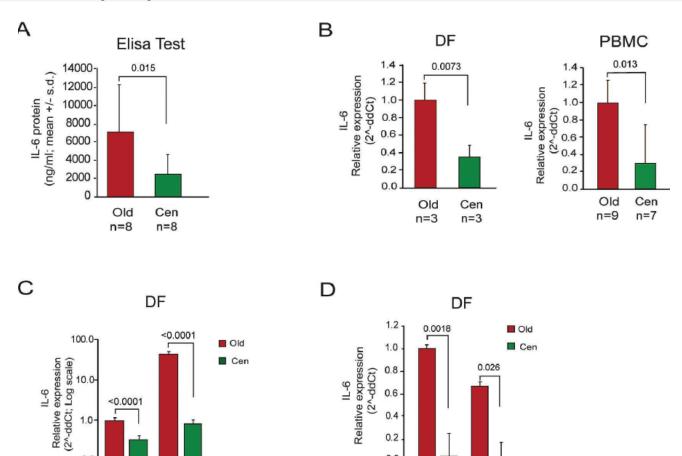
^a Department of Experimental Pathology, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
 ^b Centro Interdipartimentale "L. Galvani", University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
 ^c ER-GenTech laboratory, via Saragat 1, 44100 Ferrara, Italy
 ^d Department of Experimental Pathology and Oncology, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
 ^e I.N.R.C.A., Department of Gerontological Sciences, via Birarelli 8, 60121 Ancona, Italy
 ^f DIMORFIPA, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Italy

Mechanisms of Ageing and Development 128 (2007) 92-105

Centenarians are inflamed but the data suggested that the age-related increase of pro-inflammatory molecules likely stimulates a corresponding adaptive increase of anti-inflammatory molecules

<u>Cell Death Differ.</u> 2019 Jan 8.

ARTICLE


Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians

Gianluca Storci^{1,2,3} · Sabrina De Carolis^{1,3} · Alessio Papi⁴ · Maria Giulia Bacalini⁵ · Noémie Gensous ¹ · Elena Marasco¹ · Anna Tesei⁶ · Francesco Fabbri⁶ · Chiara Arienti⁶ · Michele Zanoni⁶ · Anna Sarnelli⁷ · Spartaco Santi^{8,9} · Fabiola Olivieri^{10,11} · Emanuela Mensà¹⁰ · Silvia Latini¹⁰ · Manuela Ferracin ¹ · Stefano Salvioli¹ · Paolo Garagnani ¹ · Claudio Franceschi⁵ · Massimiliano Bonafè^{1,3,6}

Here, we report on the anti-inflammatory molecular makeup of centenarian's fibroblasts and PBMC (low levels of IL-6, type 1 interferon beta, and pro-inflammatory microRNAs), which is coupled with low level of DNA damage (measured by comet assay and histone-2AX activation) and preserved telomere length.

Low production of IL-6 by centenarians' cells in basal conditions and after exposure to physical and chemical stressors

IL-6

0

< 0.0001

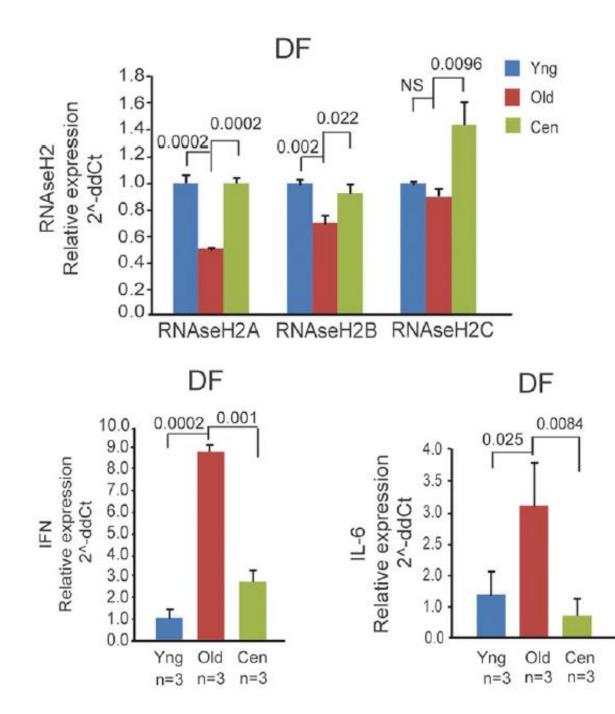
Ctr

7.5 Gy

Storci et al., Cell Death & Differentiation, 2019

Ctr

Doxo 5μM


0.6

0.4 0.2 0.0

The anti-inflammatory phenotype of 100+

- High levels of the RNAseH2 enzyme subunit and low amounts of RNAseH2 substrates, i.e. inflammatory cytoplasmic RNA:DNA hybrids, are present in centenarian's fibroblasts, .
- Extracellular vesicles from centenarian's cells propagate their anti-inflammatory phenotype to fibroblasts, myeloid, and cancer cells up-regulating RNAseH2C expression

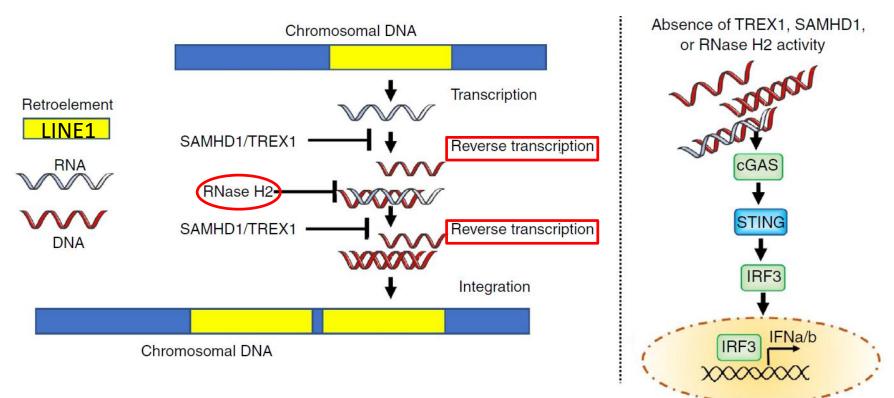
Storci et al., CDD 2019

AGS as a model

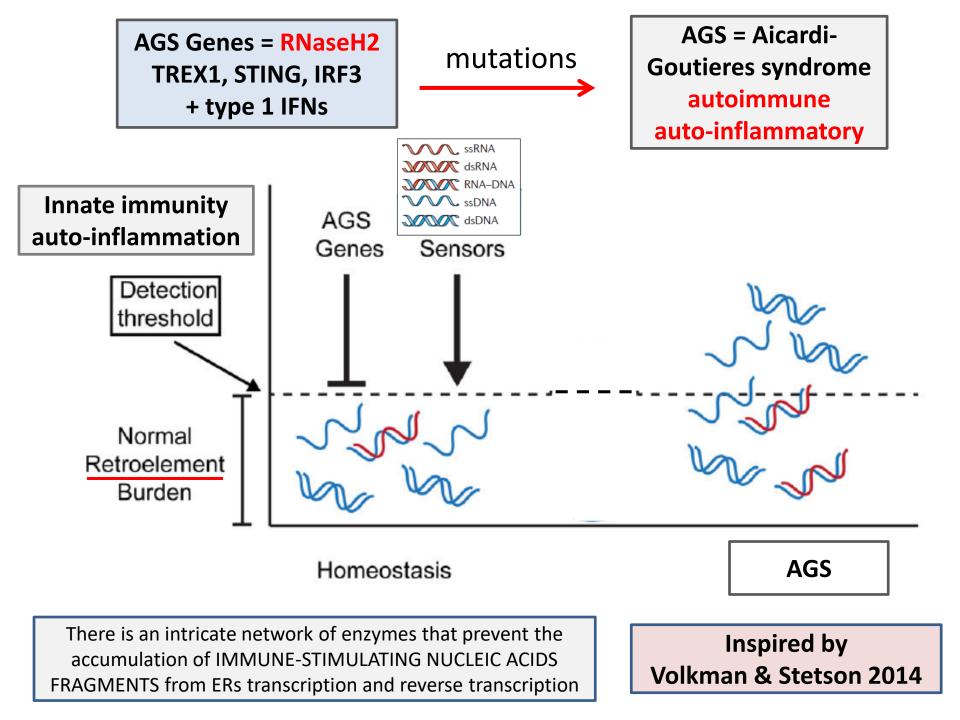
- The Aicardi–Goutières syndrome is a genetic encephalopathy that is associated with childhood illness and death. The syndrome is hypothesized to be due to misidentification of self-derived nucleic acids as nonself and the sub-sequent induction of a type I interferon–mediated response that simulates an antiviral reaction.
- Endogenous retroelements, mobile genetic elements that can be transcribed to RNA and then to DNA by reverse transcription, constitute 40% of the human genome and represent a potential source of immunostimulatory nucleic acid in patients with this syndrome

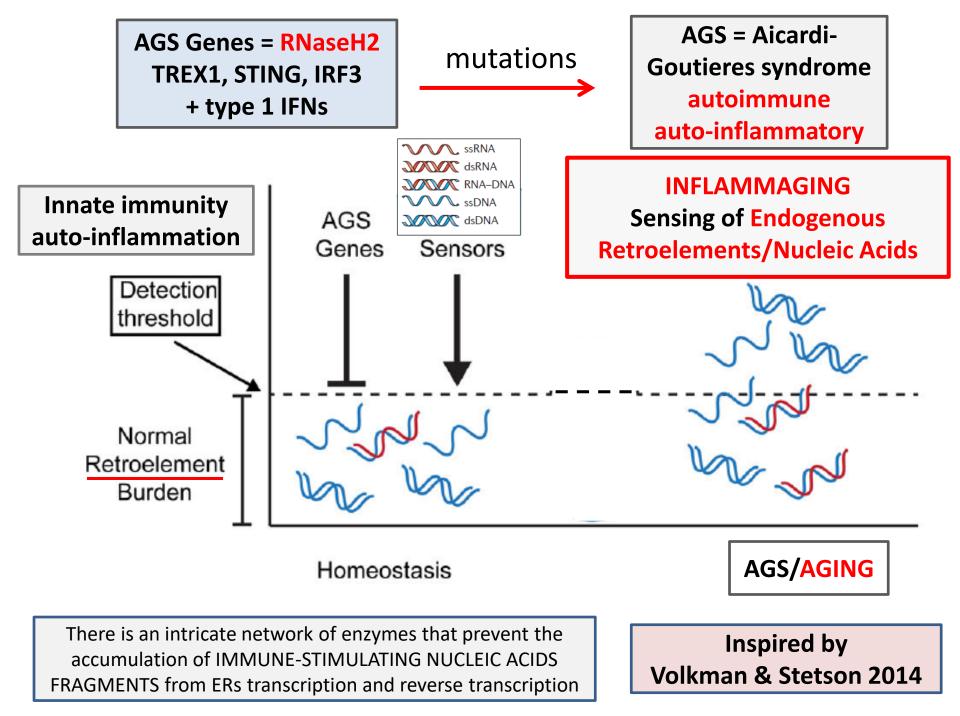
RNase H2 catalytic core Aicardi-Goutières syndromerelated mutant invokes cGAS-STING innate immunesensing pathway in mice

Vladislav Pokatayev,^{1,2}* Naushaba Hasin,³* Hyongi Chon,³ Susana M. Cerritelli,³ Kiran Sakhuja,³ Jerrold M. Ward,⁴ H. Douglas Morris,⁵ Nan Yan,^{1,2}** and Robert J. Crouch³**


<u>J Exp Med.</u> 2016 Mar 7;213(3):329-36.

- The neuroinflammatory autoimmune AGS develops from mutations in genes encoding several nucleotide-processing proteins, including RNase H2.
- Defective RNase H2 induce accumulation of self-nucleic acid species that trigger chronic type I interferon and inflammatory responses, leading to AGS pathology.


The autoinflammatory autoimmune disease Aicardi-Goutières Syndrome (AGS)

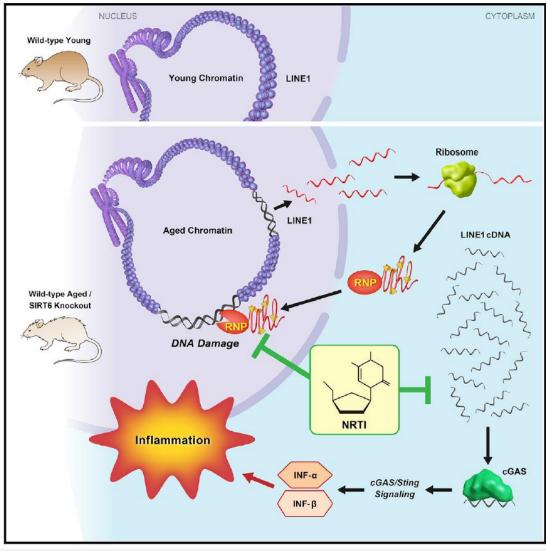

- AGS arises from mutations in seven different genes: *RNASEH2A, RNASEH2B, RNASEH2C, TREX1, SAMHD1, ADAR1,* and *IFIH1,* all of which are nucleic acid–transacting/processing enzymes.
- AGS is believed to result from activation of the innate immune pathway by nucleic acids accumulating in the cytosol when an AGS-associated gene is defective.

Retroelement control by enzymes mutated in AGS. LINE-1 retroelement propagation involves a copy and paste' cycle of transcription, reverse transcription, and integration.

Nucleoside reverse transcriptase inhibitors (NRTIs)

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE



Reverse-Transcriptase Inhibitors in the Aicardi–Goutières Syndrome

<u>Rice et al., N Engl J Med.</u> 2018 Dec 6;379(23):2275-7

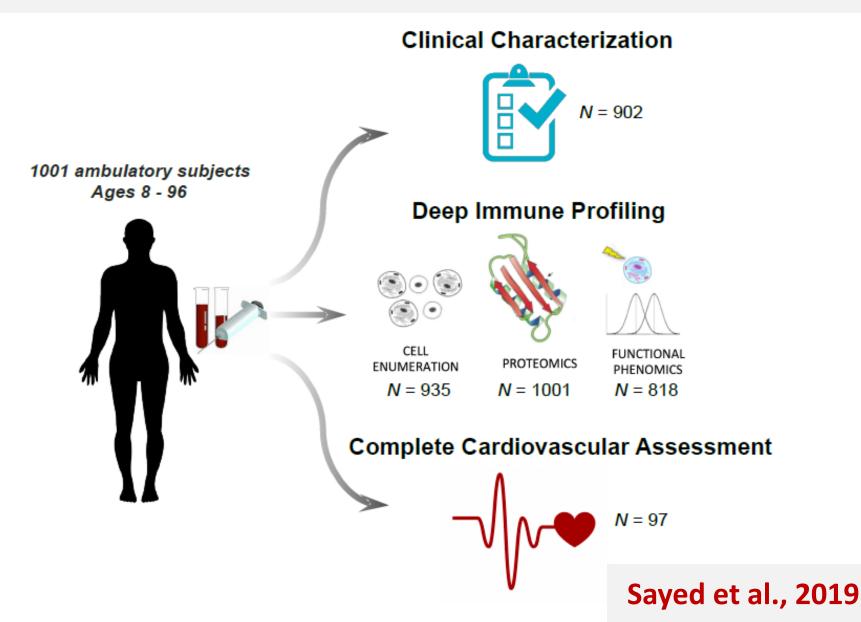
Abacavir (Ziagen), lamivudine, and zidovudine (ZDV), also known as azidothymidine (AZT)

LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation

Simon et al., 2019, Cell Metabolism 30, 871–885 April 2, 2019

Highlights

- SIRT6 KO mice accumulate L1 cDNA, triggering interferon response via cGAS pathway
- Wild-type aged mice accumulate L1 cDNA and display type I interferon response
- Reverse-transcriptase inhibitors rescue type I interferon
 response and DNA damage
- Reverse-transcriptase inhibitors extend lifespan and improve health of SIRT6 KO mice


Lamivudine, commonly called *3TC*

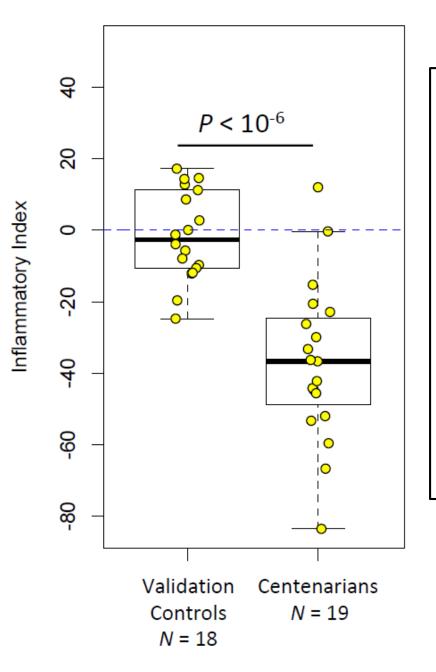
Stavudine, called *d4T* (Zerit)

- An Inflammatory Clock Predicts Multi-morbidity, Immunosenescence and Cardiovascular Aging in Humans
- Nazish Sayed, Tianxiang Gao, Robert Tibshirani, Trevor Hastie, Lu Cui, Tatiana Kuznetsova, Yael Rosenberg-Hasson, Rita Ostan, Daniela Monti, Benoit Lehallier, Shai Shen-Orr, Holden T. Maecker, Cornelia L. Dekker, Tony Wyss-Coray, Claudio Franceschi, Vladimir Jojic, François Haddad, José G. Montoya, Joseph C. Wu and David Furman

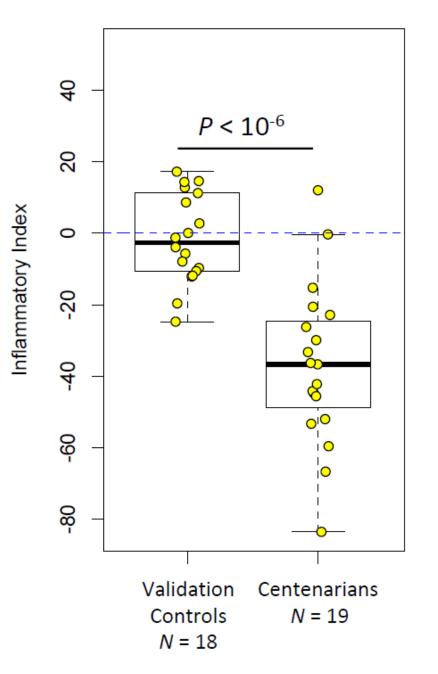
submitted

Identification of an inflammatory clock of aging (iAge) which tracked with multi-morbidity and immunosenescence

The inflammatory clock

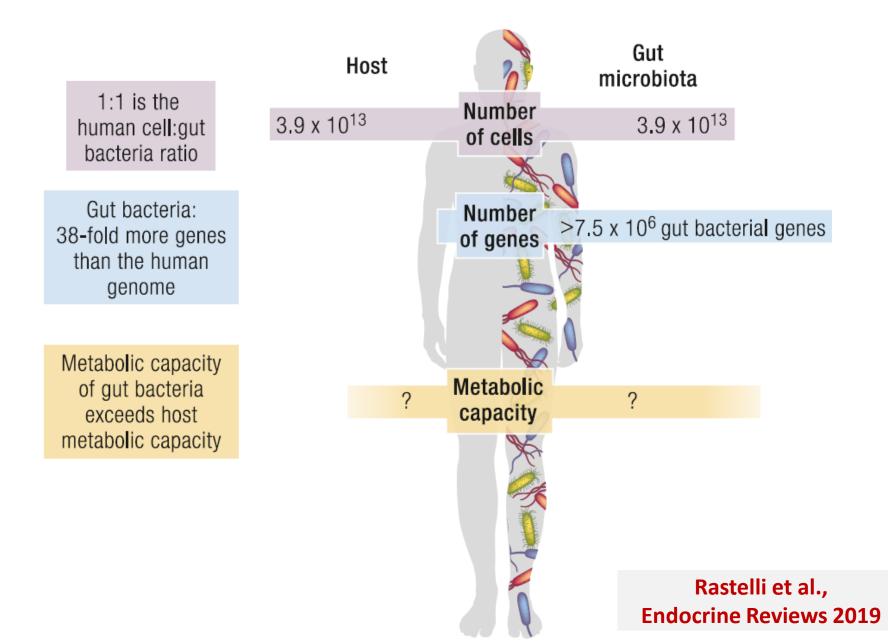

We observed a significant correlation between iAge and multi-morbidity in the older adults (*N* = 285, >60 years old), but not with any individual disease item, suggesting that the inflammatory clock is a metric for overall health linked to multiple diseases associated with aging.

Sayed et al., 2019


Inflammaging is non-linear

The phenomenon of low-grade chronic inflammation/inflammaging in humans is best modeled using non-linear methods, and based on these, one can derive a metric for chronic inflammation that accurately predicts chronological age in the population, while preserving the biological information related to the total inflammatory burden as measured by the level of circulating immune proteins.

Sayed et al., 2019


In centenarians, the inflammatory clock index (inflammatory clock minus chronological age) is on average, 40 years lower than chronological age.

The large variance observed in 100+ suggests that there may be other mechanisms apart from inflammation/ inflammaging conferring them disease protection and long lifespan

The age-related change of gut microbiota contributes to inflammaging ... but within a profound adaptive remodelling

Host and gut microbiota in comparison

GM, Aging/Longevity and Inflammaging

OPEN ORCESS Freely available online

Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians

Elena Biagi¹*, Lotta Nylund^{2,3}, Marco Candela¹, Rita Ostan⁴, Laura Bucci⁴, Elisa Pini⁴, Janne Nikkïla³, Daniela Monti⁵, Reetta Satokari², Claudio Franceschi⁴, Patrizia Brigidi¹, Willem De Vos^{3,6}

1 Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy, 2 Functional Foods Forum, University of Turku, Turku, Finland, 3 Division of Microbiology and Epidemiology, Department of Basic Veterinary Medicine, University of Helsinki, Helsinki, Finland, 4 Department of Experimental Pathology and CIG-Interdepartmental Center L. Galvani, University of Bologna, Bologna, Italy, 5 Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy, 6 Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands

PLoS One 2010

GUT MICROBIOTA AND INFLAMMAGING

Current Biology

The continuous remodeling with age of GM

Gut Microbiota and Extreme Longevity

Elena Biagi,^{1,*} Claudio Franceschi,^{2,3,4} Simone Rampelli,¹ Marco Severgnini,⁵ Rita Ostan,^{2,3} Silvia Turroni,¹ Clarissa Consolandi,⁵ Sara Quercia,¹ Maria Scurti,^{2,3} Daniela Monti,⁶ Miriam Capri,^{2,3} Patrizia Brigidi,¹ and Marco Candela^{1,*} ¹Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy ²DIMES-Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Bologna, Bologna 40126, Italy ³CIG-Interdepartmental Centre "L. Galvani," Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy ⁴IRCCS, Institute of Neurological Sciences of Bologna, Bologna 40139, Italy ⁵Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan 20090, Italy ⁶Department of Clinical, Experimental and Biomedical Sciences, University of Florence, Florence 50134, Italy

Current Biology 26, 1–6 June, 2016

There is a GM signature of aging and longevity

Adaptive, balanced pro- & antiinflammatory remodeling of GM with age from 22 to 109 years

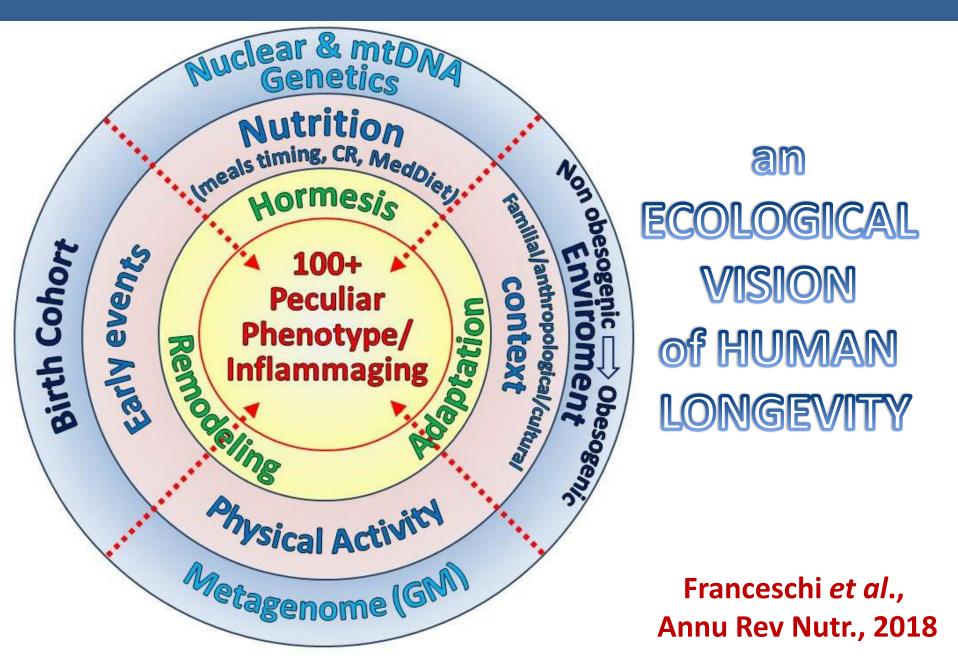
Biagi et al., Curr Biol 2016

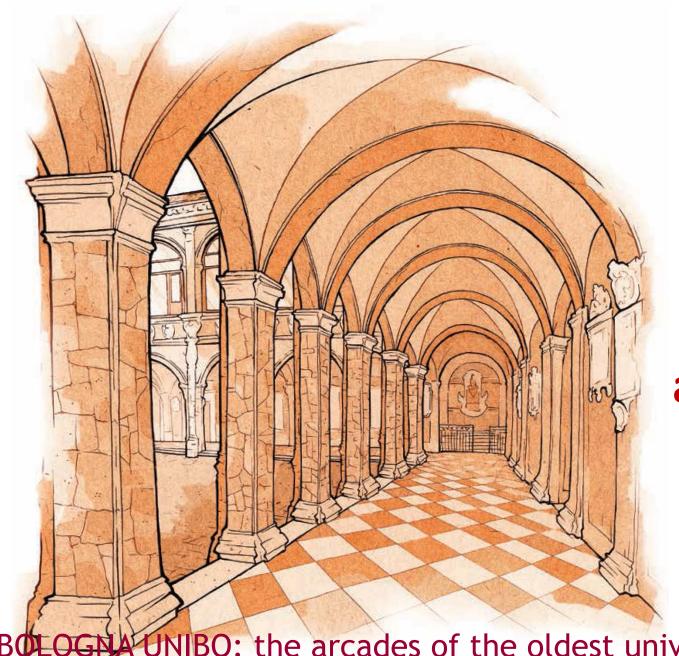
Table 1. Age-related trajectory of bacterial groups contributing to the sample separation.

	Average relative abundance (%)				
Bacterial group	Group Y	Group E	Group C	Group S	Trajectory
Coprococcus	8.4	5.4	4.9	3.3	V
Roseburia	7.9	4.6	2.3	2.4	ĸ
Faecalibacterium	8.6	7.6	4.5	2.6	K
Uncl. Lachnospiraceae	6.1	5.9	4.9	4.6	ĸ
Oscillospira	0.9	2.1	3.2	3.6	ァ
Odoribacter	0.08	0.2	0.5	0.3	ァ
Butyricimonas	0.03	0.07	0.2	0.1	ァ
Eggerthella	0.07	0.1	0.1	0.3	ァ
Akkermansia	1.1	2.3	2.6	4.0	ァ
Anaerotruncus	0.01	0.03	0.05	0.1	ァ
Bilophila	0.05	0.08	0.1	0.1	7
Christensenellaceae	0.5	1.1	2.7	3.3	7
Synergistaceae	0	0.2	0.6	0.9	7

Biagi et al., Curr Biol 2016

Geriatric oncology 1


Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging


Arya Biragyn, Luigi Ferrucci

thelancet.com/oncology Vol 19 June 2018

«Expansion of gut dysbiosis and leakage of microbial products contribute to the chronic inflammatory state [inflammaging], which negatively affects the immune system and impairs the removal of mutant and senescent cells, thereby enabling tumour growth»

The complex combination of «INGREDIENTS» to reach 100 years

Thanks 4 your attention

BOLOGNA UNIBO: the arcades of the oldest university in the Western world (founded in 1080)