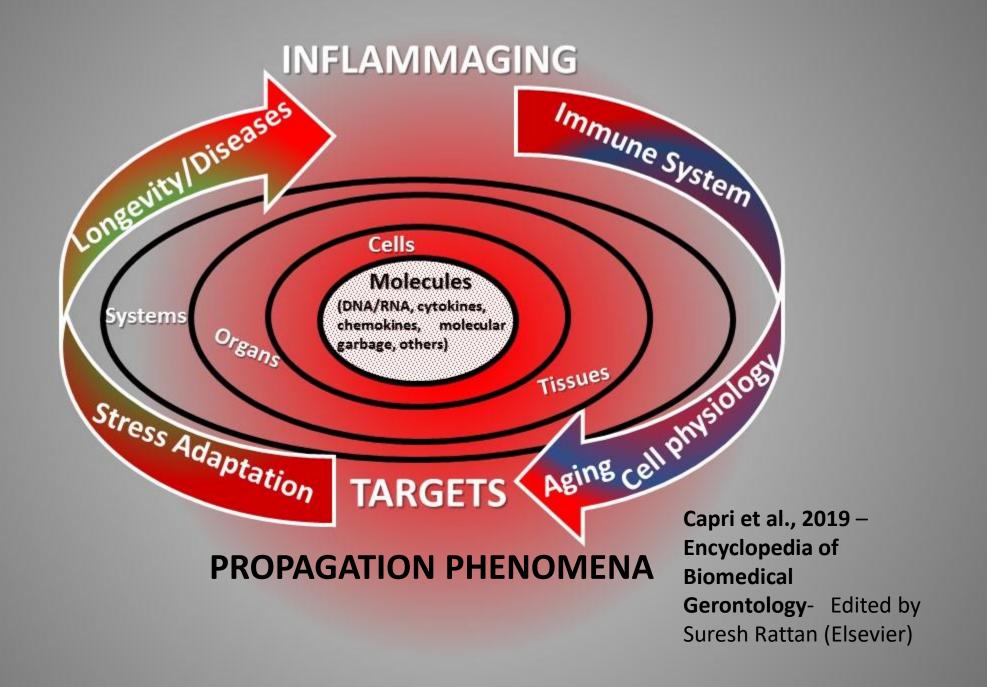


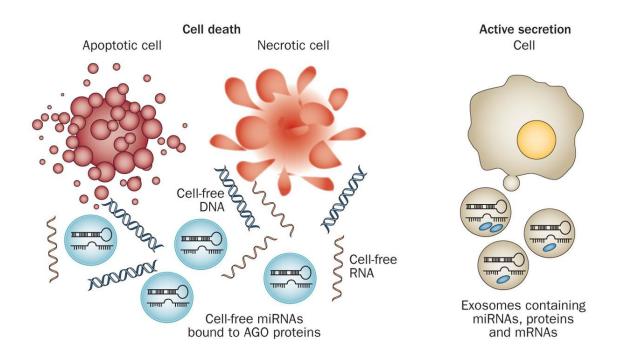
Tel Aviv, Museum of Natural History December 2nd 2019

Healthy Life and Longevity

Circulating cell-free DNA and microRNAs

MIRIAM CAPRI


DIMES – Department of Experimental, Diagnostic and Specialty Medicine


ALMA MATER STUDIORUM Università di Bologna, Italy

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONA

Release of Cell-free DNA and miRNAs from cells into the blood circulation

Schwarzenbach, H. *et al.* (2014) Clinical relevance of circulating cell-free microRNAs in cancer *Nat. Rev. Clin. Oncol.* doi:10.1038/nrclinonc.2014.5

THE DEEP SEQUENCING OF CIRCULATING cf-nDNA

Aging Cdl. 2019;18:e12890. https://doi.org/10.1111/acel.12890

Received: 31 May 2018

DOI: 10.1111/acel12890

ORIGINAL PAPER

WILEY Aging Cell

Cell-free DNA as a biomarker of aging

Revised: 12 October 2018

Yee Voan Teo¹ | Miriam Capri^{2,3} | Cristina Morsiani³ | Grazia Pizza^{3,4} |

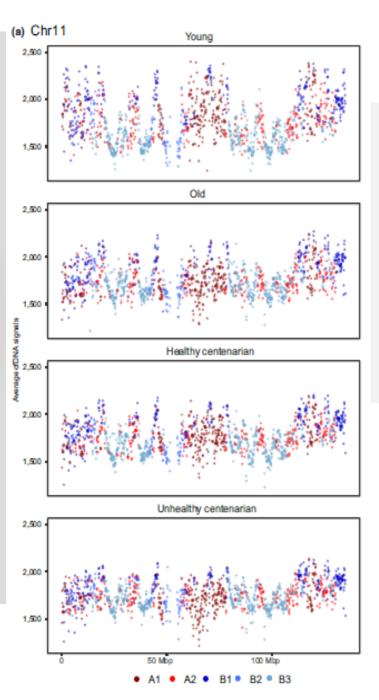
Ana Maria Caetano Faria⁵ | Claudio Franceschi⁶ | Nicola Neretti^{1,7}

Feasibility study on 12 volunteers:

- Three healthy YOUNG 25 y ± 0.5; Y
- Three healthy OLD 71 y ± 1.6; O
- Six 101.8 y ± 1.1; 3 in very good <u>health conditions-HC-</u> (SMMSE ≥ 24, ability to walk) and 3 in <u>unhealthy conditions UHC-</u> (not able to perform SMMSE, bedridden, they died about three years after).
- ✓ F:M = 2:1 (except for unhealthy centenarians who consisted of all females)

Biological questions:

• Did they differ in term of quantity of cf-DNA?

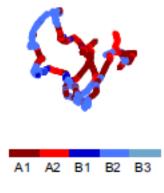

```
    No, they didn't.
    Y (7.9 ng/mL ± 2 SD);
    O (7 ng/mL ± 0.8);
    H (8.4 ng/mL ± 0.8);
    UHC (7.7 ng/mL ± 1.3).
```

• Did they differ in term of cf-DNA sequences, in particular Healthy and Unhealthy 100+?

> Yes, they did.

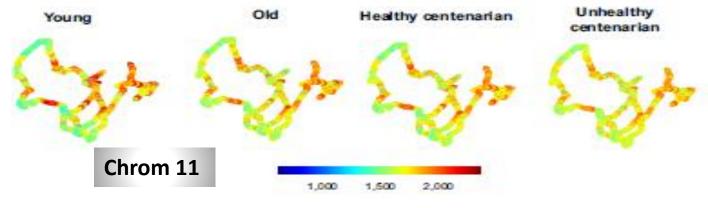
- Identified an enrichment of 166-175 bp fragments, which corresponds to the length of a chromatosome. Where do they are from? => a bioinformatic approach (MNase-seq).
- Identified 5

 subcompartments (A1, A2,
 B1, B2, B3) using Hi-C data-seq associated with distinct histone modifications.



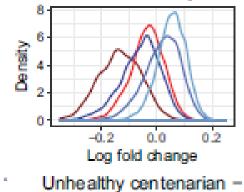
A1- A2 euchromatic regions that are gene rich
B1- facultative heterochromatic

regions B2- enriched at the nuclear lamina and nucleolus-associated domains (NADs)


B3- also enriched at the nuclearlamina domain but not at NADs.

(c) Chr11

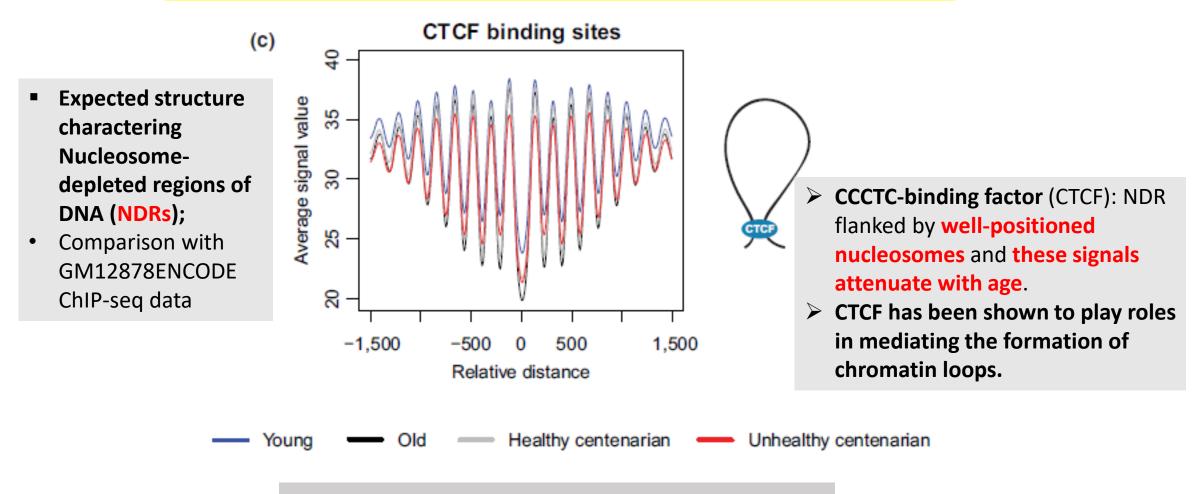
Cf-DNA signal average in the different subcompartments along all chromosomes


Age group	cfDNA signals	Variance	P-value (relative to Young)
Young	B1>A1>A2>B2>B3	68418.82	
Old	B1>B2>A2>A1>B3	41924.42	< 2.2x10 ⁻¹⁸
Healthy centenarian	B1>A1>B2>A2>B3	39290.87	< 2.2x10 ⁻¹⁸
Unhealthy centenarian	B1>B2>A2>B3>A1	33982.7	< 2.2x10-18

Average cf-DNA signals

COMPARISONS OF ALL GROUPS INSIDE THE DIFFERENT REGIONS

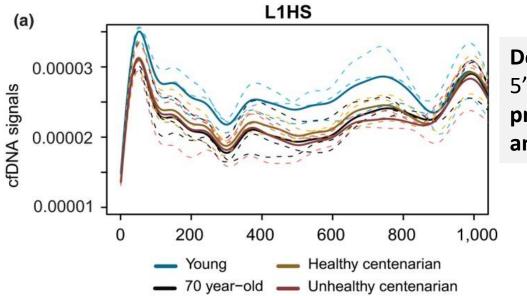
(c) All chr Old - Young

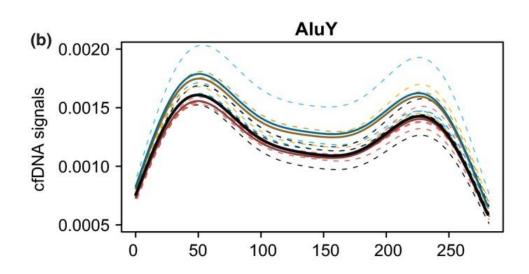

Young 6 Density 0.0 0.2 -0.2Log fold change Healthy centenarian -Youna 10.0 7.5 Density 5.0-2.5 0.0 -02 0.2Log fold change

A1 A2 B1

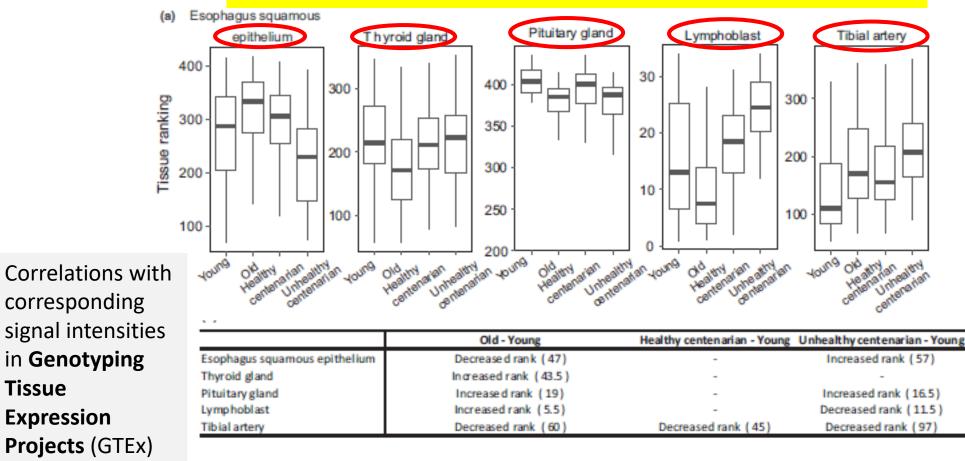
All groups vs Y group (in the picture):

- Increase of B2 and B3;
- Decrease of A1, A2 and B1 in O and UHC groups (also confirmed in HC except A2).
- Young subjects are similar to healthy centenarians
- Old subjects are similar to unhealthy centenarians
- Redistribution of cf-DNA signals from heterochromatin regions to euchromatic regions in old age and unhealthy conditions


WHAT RELEVANT SEQUENCES in cf-DNA?


Major differences between Y and UHC

WHAT GENE-RELATED SEQUENCES in cf-DNA?



Decreased (first 668 bp of 5'UTR) cf-DNA signals from L1HS promotor and enhancer in UHC and O.

Decreased cf-DNA signals from **AluY** in **UHC** and **O**.

WHERE DOES cf-DNA COME FROM?

	Healthy centenarian - Unhealthy centenarian	Old - Unhealthy centenarian	Healthy centenarian - Old
Esophagus squamous epithelium	Decreased rank (76)	Decreased rank (104)	-
Thyroid gland	-	Increased rank (52)	Decreased rank (40)
Pituitary gland	-	-	-
Lymphoblast	Increased rank (6)	Increased rank (17)	Decreased rank (11)
Tibial artery	Increased rank (52)	Increased rank (37)	

p < 0.05; Kruskall-Wallis Test

Tissue

CONCLUSIONS (I)

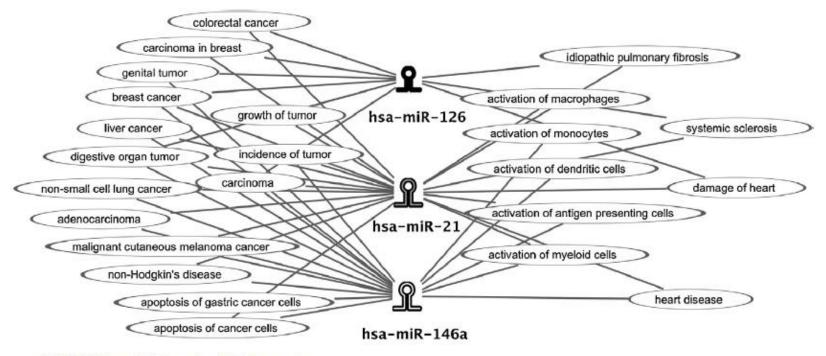
Circulating cf-DNA profile changes with age (increase of euchromatin regions).

 Nucleosome sequences at several genomic locations (CCTF-binding site and retrotransposon elements) have been identified and their signals decrease in old age/unhealthy longevity.

✓ Data of cf-DNA-seq pave the way for identifying the organs/tissues where cf-DNA comes from and likely characterise new biomarkers of healthy/unhealthy trajectories.

Ageing Research Reviews 12 (2013) 1056–1068

Contents lists available at ScienceDirect


Ageing Research Reviews

journal homepage: www.elsevier.com/locate/arr

Review

MicroRNAs linking inflamm-aging, cellular senescence and cancer

Fabiola Olivieri^{a,b}, Maria Rita Rippo^a, Vladia Monsurrò^c, Stefano Salvioli^{d,e}, Miriam Capri^{d,e}, Antonio Domenico Procopio^{a,b}, Claudio Franceschi^{d,e,*}

THE DEEP SEQUENCING OF CIRCULATING small-RNAs: the same cohort of 12 volunteers

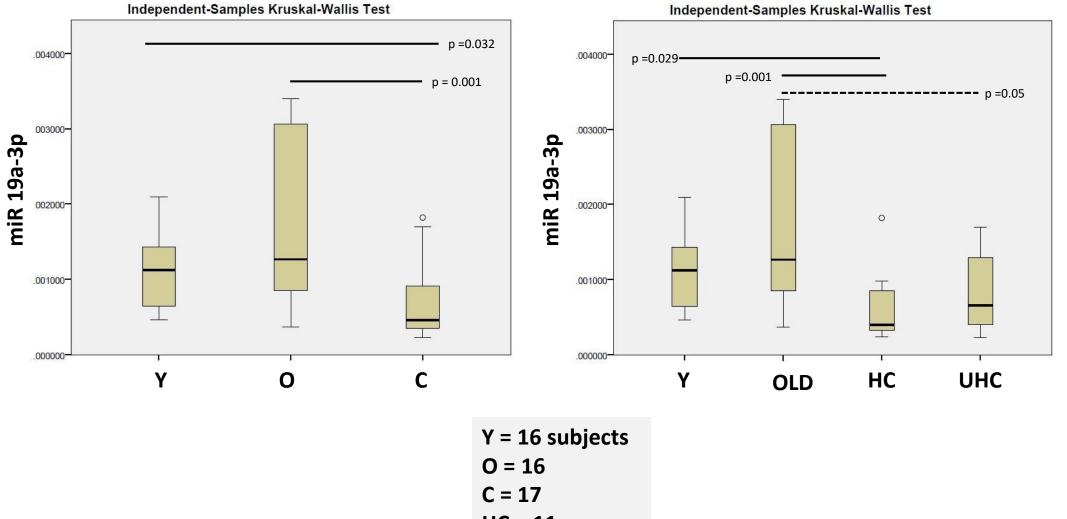
Subjects	Total reads	Aligned reads	Precursor miR reads	Mature miR Reads	
Y1	1,6E+07	6,0E+06	4,5E+03	5,1E+06	
Y2	1,2E+07	6,2E+06	3,2E+03	5,8E+06	
Y3	7,7E+06	1,3E+06	1,6E+03	9,3E+05	
01	2,1E+07	9,4E+06	5,7E+03	8,4E+06	
02	1,1E+07	3,4E+06	3,2E+03	2,8E+06	
O3	1,4E+07	5,6E+06	9,0E+03	4,5E+06	
HC1	7,0E+06	2,7E+06	1,9E+03	2,3E+06	
HC2	3,9E+06	1,2E+06	8,6E+02	1,0E+06	
HC3	4,1E+06	1,5E+06	1,1E+03	1,2E+06	
UHC1	UHC1 5,1E+06		3,8E+02	6,4E+05	
UHC2	UHC2 4,5E+06		7,4E+02	7,8E+05	
UHC3	4,6E+06	7,2E+05	1,2E+03	4,6E+05	

NextSeq500 (Illumina platform/Exiqon).

Quality control: Q-score>30; 99.9% accuracy.

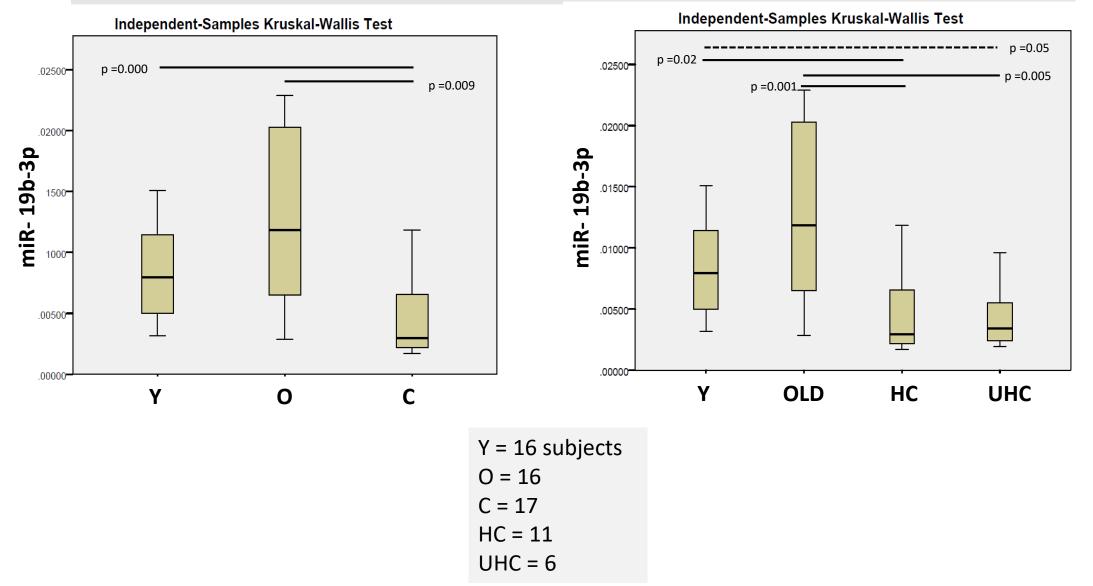
Mapping on miRBase 2.0

Manuscript in preparation; **Morsiani et al**.,

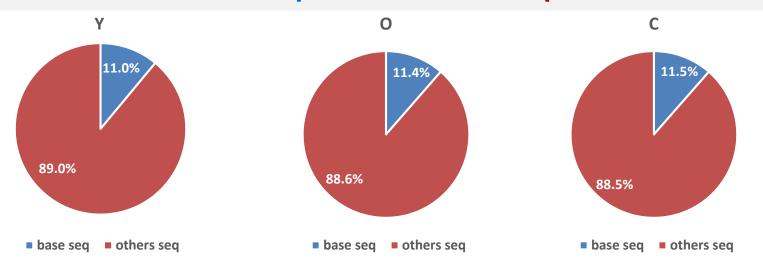

18 Significant deep-sequenced miRs with age

	Young vs Old			Young vs cent			Old vs cent]
miR	logFC	logCPM	PValue	logFC	logCPM	PValue	logFC	logCPM	PValue	
hsa-miR-106b-5p	-0.0311	8.3847	0.9634	-1.9951	8.3847	0.0002	-1.9641	8.3847	0.0003	
hsa-miR-122-5p	1.0975	10.8101	0.0595	-0.7437	10.101	0.1163	-1.8412	10.8101	0.0001	
hsa-miR-133a-3p	-1.5420	5.4577	0.0324	-1.1319	5.4577	0.0487	0.4092	5.4577	0.5639	1
hsa-miR-144-5p	-0.5618	7.1328	0.3424	-1.9516	7.1328	0.0001	-1.3900	7.1328	0.0043	1
hsa-miR-15b-5p	-0.6828	7.5036	0.2543	-1.4883	7.5036	0.0026	-0.8056	7.5036	0.1032	1
hsa-miR-16-5p	-0.7083	15.1046	0.3189	-1.9051	15.1046	0.0010	-1.1968	15.1046	0.0380	
hsa-miR-182-5p	0.1295	8.9882	0.8019	-1.1937	8.9882	0.0053	-1.3232	8.9882	0.0019	
hsa-miR-185-5p	0.4239	10.6919	0.4907	-1.5944	10.6919	0.0016	-2.0183	10.6919	0.0001	
hsa-miR-186-5p	0.2303	10.9363	0.6683	-1.1006	10.9363	0.0132	-1.3309	10.9363	0.0027	
hsa-miR-1908-5p	0.6625	8.3791	0.1675	1.4024	8.3791	0.0017	0.7400	8.3791	0.0886	
hsa-miR-192-5p	0.3553	9.9912	0.5382	-1.2916	9.9912	0.0067	-1.6469	9.9912	0.0005	
hsa-miR-19a-3p	0.7032	6.7436	0.4410	-0.8372	6.7436	0.2571	-1.5404	6.7436	0.0376	
hsa-miR-19b-3p	0.5460	8.3340	0.5427	-1.4363	8.3340	0.0478	-1.9823	8.3340	0.0065	[
hsa-miR-20b-5p	-0.2778	6.7998	0.6658	-1.7899	6.7998	0.0006	-1.5122	6.7998	0.0039	
hsa-miR-224-5p	1.6153	4.8278	0.0730	1.6481	4.8278	0.0429	0.0354	4.8278	0.9993	1
hsa-miR-3138	0.8065	4.2355	0.1851	1.8036	4.2355	0.0018	0.9996	4.2355	0.0669	1
hsa-miR-451a	-0.4854	15.7944	0.4902	-2.5304	15.7944	0.0001	-2.0451	15.7944	0.0004	1
hsa-miR-7-5p	-0.3488	6.8461	0.4976	-1.4227	6.8461	0.0009	-1.0740	6.8461	0.0121	

7 Significant deep-sequenced miRs in Healthy/Unhealthy longevity

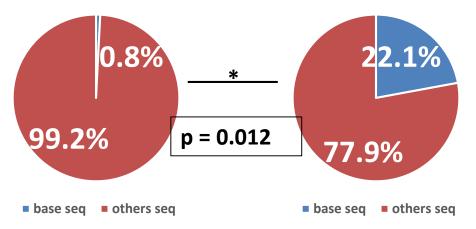

	Healthy	vs	Unhealthy			
	Centenarians					
miR	logFC	logCPM	PValue			
hsa-miR-19a-3p	2.9109	6.1878	0.0008			
hsa-miR-19b-3p	2.8257	7.3973	0.0008			
hsa-miR-221-5p	2.1594	4.8648	0.0053			
hsa-miR-145-5p	2.2146	8.2412	0.0064			
hsa-miR-10b-5p	2.0145	10.6144	0.0076			
hsa-miR-4433b-3p	2.4683	6.7413	0.0104			
hsa-miR-206	2.0291	5.2636	0.0327			

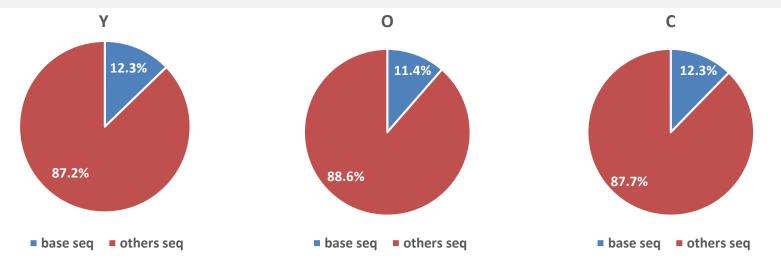
Validation in an enlarged cohort (66 subjects) by RT-qPCR miR-19a-3p

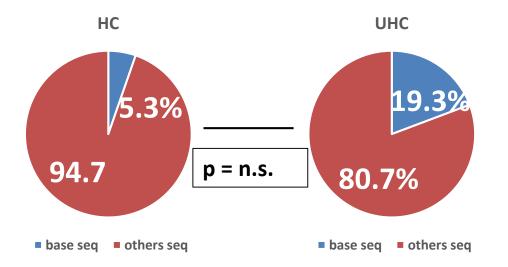


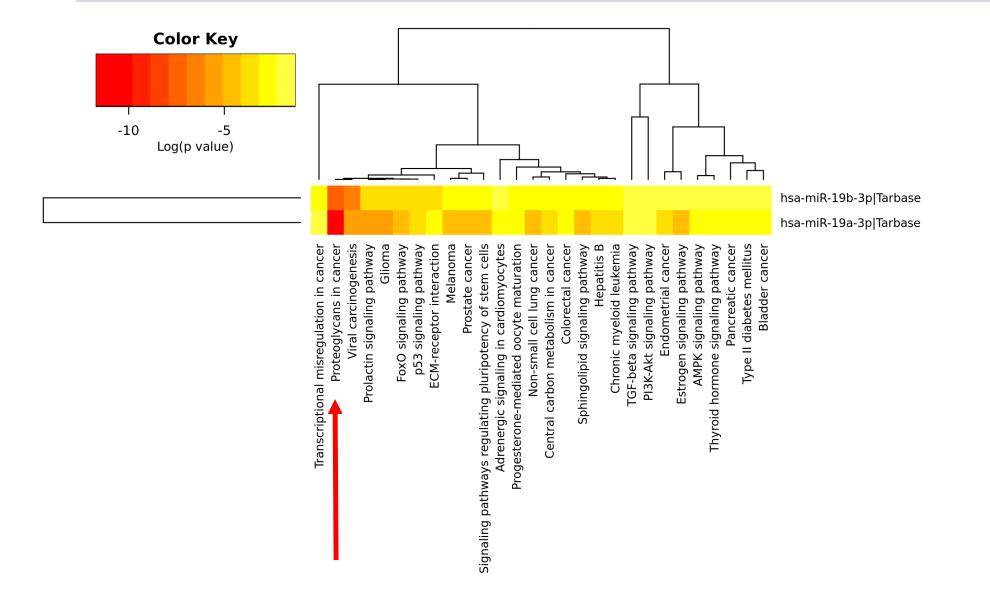
HC = 11 UHC = 6

Validation in an enlarged cohort (66 subjects) by RT-qPCR miR-19b-3p

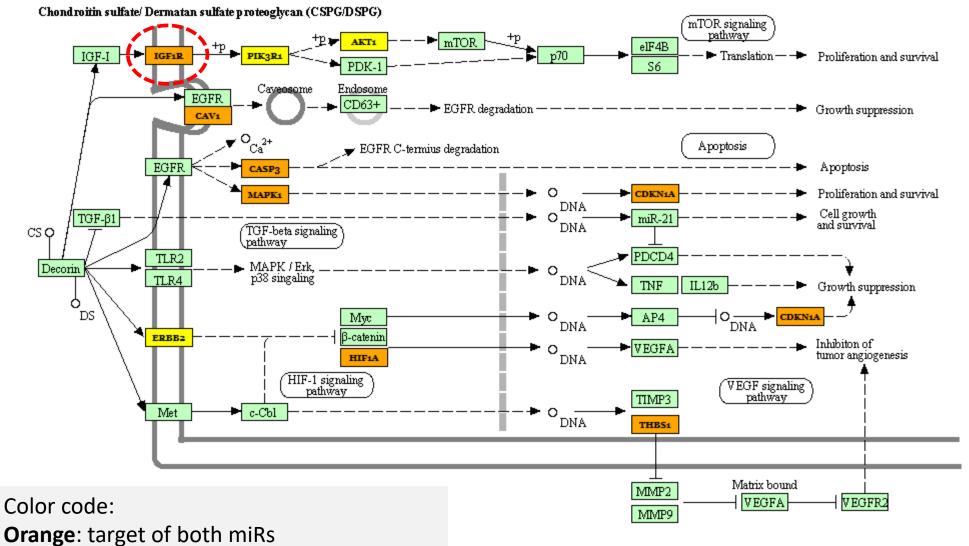

miR-19a-3p ISOMIRs: Expression (%) of the exact sequence vs other sequences


UHC

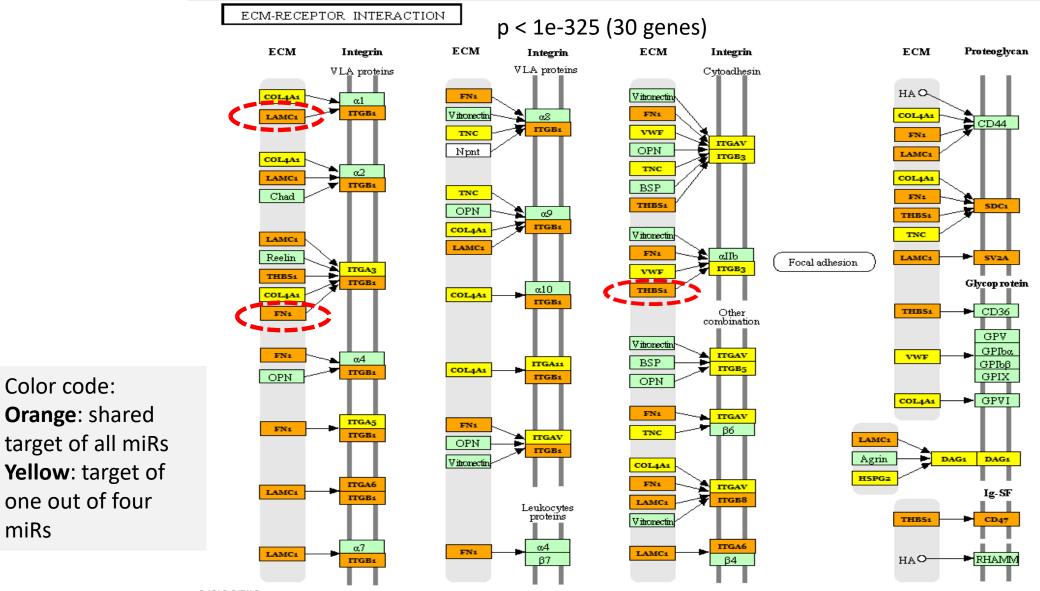

HC



miR-19b-3p ISOMIRs: Expression (%) of the exact sequence vs other sequences



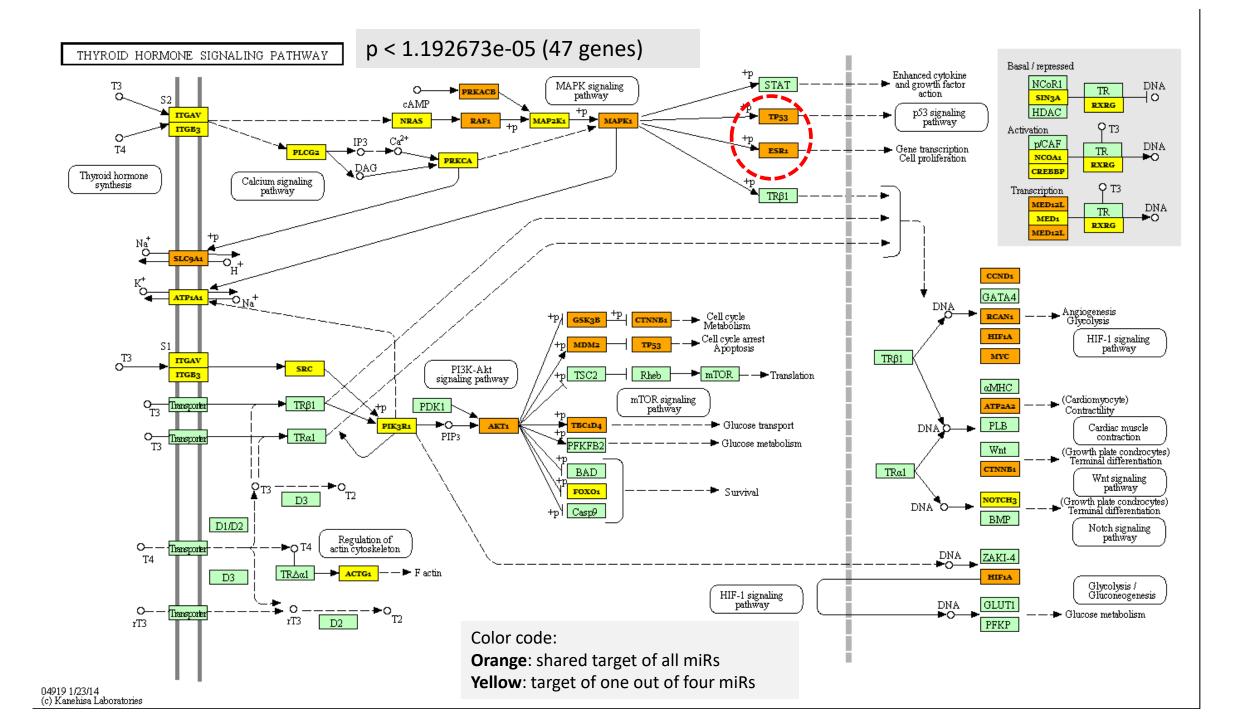
KEGG pathways considering the intersection of miR-19a-3p and miR-19b-3p validated targets


KEGG pathway: Proteoglycans in cancer (44 genes)

p <1e-325

Yellow: target of one out of two miRs

KEGG pathway: Intersection of miR-19a-3p; -19b-3p; -221-5p and -145-5p validated targets


04512 3/7/13 (c) Kanehisa Laboratories

Color code:

Orange: shared

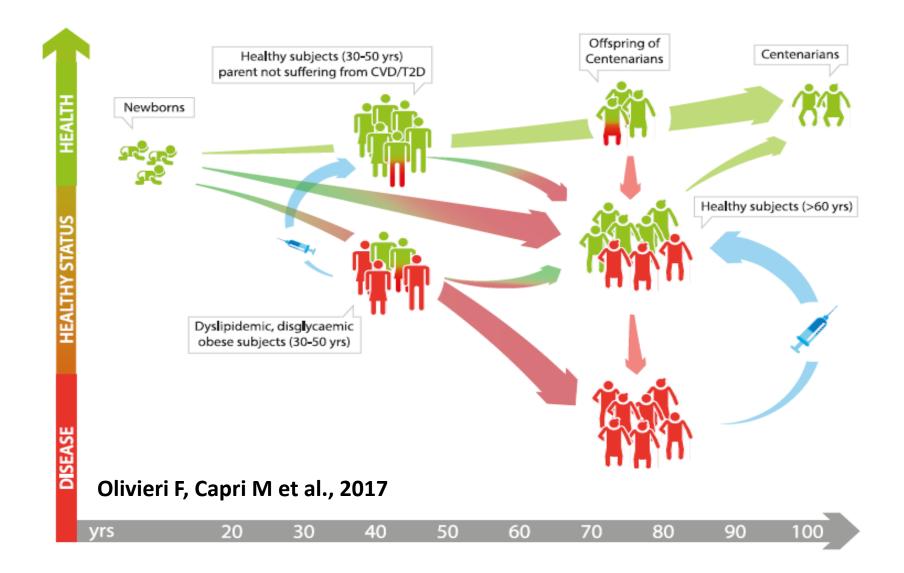
one out of four

miRs

CONCLUSIONS (II)

 miR-19a-3p and miR-19b-3p change with age/longevity and are involved in the PROTEOGLYCANS IN CANCER pathway (KEGG) in particular IGF1R is a target of both;

 Small-RNA deep sequencing between HC and UHC identify seven miRs and their targets (shared by 4 out of 7 miRs) converge on Extracellular-Matrix interaction and Thyrod Hormone signalling pathways => convergence with cf-DNAseq data;


✓ Isomirs-19a/19b increase in HC.

NEW PERSPECTIVE

Do isomirs explain epigenetic adaptation phenomena? Do they represent a possible molecular advantage? => association with ER –stress (Mesitov et al., 2017); induced by IFN-type I (Nejad et al., 2018).

> THE INCREASE OF CIRCULATING ISOMIRs IN HEALTHY LONGEVITY MAY BE THE RESULT OF THE INDIVIDUAL IMMUNOBIOGRAPHY

Circulating cf-DNA and miRs/IsomiRs for healthy and unhealthy trajectory prediction?

MiR-TEAM at ALMA MATER STUDIORUM

Current projects:

- ✤ Aging/longevity
- Carotid disease
- Liver transplant and old donors
- Myopathies
- Myelofibrosis syndromes
- Inflammation associated with human spaceflight

Miriam Capri

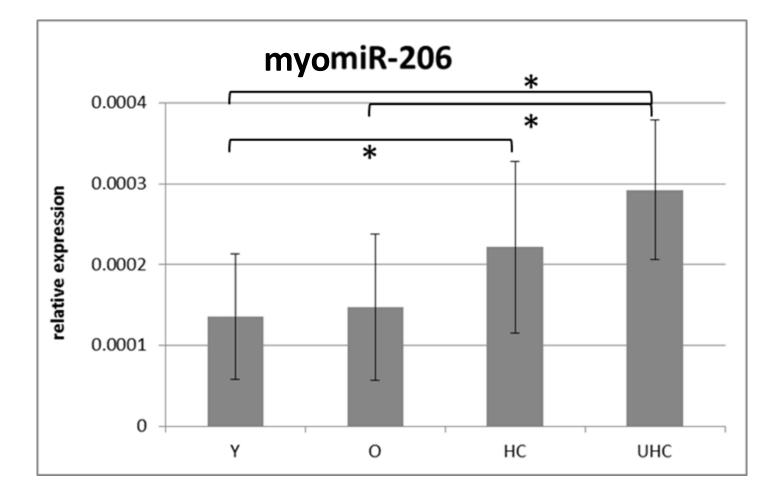
Cristina Morsiani

Salvatore Collura

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Thank you very much for your attention!

International Collaboration with:

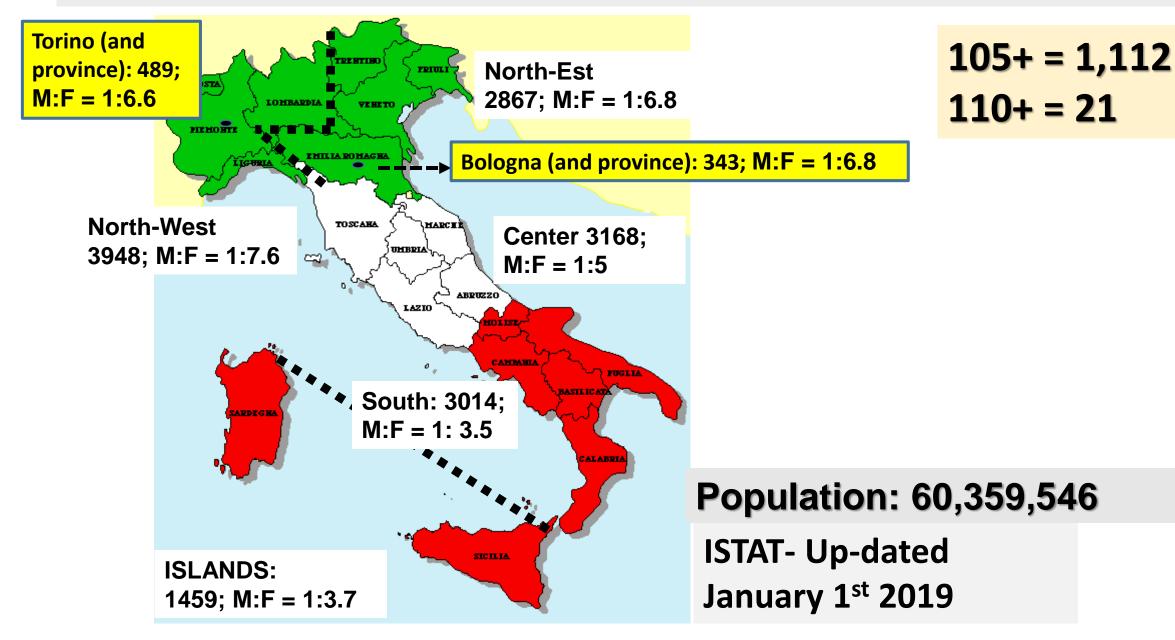

- DLR- Institute of Aerospace Medicine-DE
- University of Konstanz- DE
- Karolinska Institutet- SW
- University College London-UK
- University of Nottingham-UK
- University of Leiden- NL
- University of Bordeaux-FR
- NIHS/Nestec- CH
- University of Wien- AU
- University of Jyväskylä-FI
- Buck Institute- CA, USA
- Stanford University- CA, USA
- University of Los Angeles-CA, USA
- Brown University- RI, USA
- Albert Einsten Institute- NY-USA
- NIH-NIA-National Institute of Health-MD, USA
- BGI- Honk Kong
- Universidade Federal de Minas Gerais, Brasil

Haemato-biochemical Parameters

		WBC	МСНС	RDWCV	ALB	PROT	CRP
НС	mean	5.65	31.82	14.68	3.82	7.10	3.41
	sd	0.92	0.78	0.99	0.58	0.48	4.41
UHC	mean	7.55	30.43	16.30	3.25	6.46	11.57
	sd	2.41	1.32	2.23	0.23	0.36	10.18
	p value	0.039	0.019	0.063	0.039	0.028	0.041

WBC: white blood cell count (4.8-8.5 x1000/µl). **MCHC**: mean corpuscular hemoglobin concentration (33-38 gr/dl). **RDWCV**: red blood cell distribution (11.5-14.5 %). **ALB**: albumin (3.5-5.2 gr/dl). **PROT**: total protein (6.2-8 gr/dl). **CRP**: C-reactive protein (max 6 mg/l).

microRNAs from skeletal muscle



Relative expression of miR-206.

RT-qPCR in plasma samples of **15** healthy young donors (average 30 years old), **16** healthy old donors (average 71 years old), **16** centenarians of which **10** healthy and 6 unhealthy (average 101 years). miR-206 was evaluated in young (Y), old (O), healthy (HC) and unhealthy centenarians (UHC). Data are reported as **mean values** \pm standard deviation. Data were analyzed with Kruskal-Wallis test: * = $p \le 0.05$.

Paper in progress with Marco Sandri

CENTENARIANS IN ITALY (100+): 14,456; M = 2,324; F= 12,132

